Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волна восстановления

    В кислых и нейтральных растворах полярографические волны восстановления ионов Pb + и Т1+ практически сливаются в 1 М растворе НС1 Е i/2 = —0,44 В для ионов свинца и 1/2 = —0,48 В для ионов таллия. В щелочной среде на полярограмме смеси появляются две раздельные волны свинец образует гидроксо-комплекс (РЬО)ОН , который восстанавливается при —0,16 В, незакомплексованные ионы Т1+ восстанавливаются при —0,49 В. [c.150]


    Полярографирование смесей органических перекисей с перекисью водорода показало, что если в смеси присутствует не одна, а две или три из изученных перекисей, то определение их количественного соотношения является затруднительным, так как на нолярограмме меледу их волнами восстановления не получается отчетливой площадки. В этом случае разработанный метод имеет лишь качественный характер начало волны восстановления при потенциале, меньшем, чем —0,8 в, обозначает наличие в анализируемой смеси по крайней мере одной органической перекиси, причем о природе ее можно судить но величине этого потенциала. [c.229]

    Количественный характер приобретает этот метод анализа при наличии и смеси только алкилгидроперекиси и перекиси водорода. Между волнами восстановления таких перекисей большей частью намечается некоторый перегиб, что дает возможность количественного их определения. [c.229]

    Для необратимой полярографической волны восстановления справедливо уравнение  [c.303]

    Оба типа максимумов мож.но подавить добавлением небольших количеств поверхностно-активных веществ, таких, как желатин, крах,мал и др. Аналогичное действие оказывают многие другие высокомолекулярные соединения. Например, уксус, получаемый при брожении, дает две волны восстановления кислорода (/ и 2, кривая б рис. Д.100), а синтетический уксус кривая а — только один ярко выраженный максимум в области 1-й волны. Это можно использовать для их разделения. [c.292]

    Совокупность всех этих признаков позволяет отличить необратимую волну от обратимой. Необратимый характер волны может проявляться лишь при достаточно медленном протекании стадии разряда — ионизации, когда константа скорости м/с. При больших значениях отклонения тока от уравнения равновесной волны оказываются меньше возможных ошибок эксперимента. Характерным примером необратимой полярографической волны может служить волна восстановления ионов Н3О+ на ртутном капельном электроде в разбавленных растворах кислот (10" —10 н.), [c.263]

    Согласно измерениям скорости восстановления кислорода при различных парциальных давлениях Оа, порядок реакции по Оа равен единице. Это означает, что в медленной стадии участвуют молекулы, а не атомы кислорода и что поверхностная концентрация (Оа),д5 мала. На ртутном электроде в области pH 2—8 порядок реакции по ионам Н+ равен нулю. Зависимость между потенциалом и логарифмом плотности тока линейна с коэффициентом наклона 2,3 2 T/f. В присутствии сильно адсорбирующихся анионов С1", Вг и 1 волна восстановления кислорода смещается в отрицательную сторону. Эти данные можно объяснить, если принять, что медленной стадией яв- [c.340]


    Увеличение pH на единицу смещает волну восстановления кислорода на 60 лб в отрицательную сторону. [c.357]

    Роль гомогенных химических реакций в электрохимической кинетике была выявлена впервые в ходе полярографических измерений на капельном ртутном электроде (Р. Брдичка и К. Визнер). При полярографическом восстановлении некоторых слабых органических кислот при небольших pH наблюдается лишь волна восстановления недиссоциированных молекул этих кислот. При увеличении pH высота этой волны уменьшается, а при более отрицательных потенциалах появляется волна восстановления анионов кислот. Высота первой волны ниже, чем рассчитанная по уравнению Ильковича для концентрации недиссоциированных молекул кислоты в растворе. Ток этой волны практически не зависит от высоты ртутного столба, что указывает на его кинетическую природу. Последнее подтверждается также высокой энергией активации процесса, соответствующего первой волне. Эти факты говорят о том, что ток первой волны лимитируется скоростью гомогенной химической реакции протонизации А 4-Н+ НА. Ско-. рость электродных процессов может лимитироваться и другими медленными химическими реакциями (дегидратации, диссоциации или образования комплексных частиц). [c.206]

    Потенциал полуволны необратимой полярограммы катодного процесса резко сдвинут в отрицательную сторону по сравнению с равновесным значением 1/2, и этот сдвиг приблизительно равен перенапряжению процесса (рис. 4.16). Необходимо отметить, что потенциал полуволны необратимого процесса не является постоянной величиной и зависит как от состава раствора, так и от параметров установки — скорости вытекания ртути и периода капанья (см. уравнение (4.51)]. Характерным примером необратимой полярограммы является волна восстановления иона гидроксония. [c.235]

    Обычно при малых концентрациях реагента О в системе на полярограммах наблюдается только одна предволна (или последующая волна), высота которой растет пропорционально концентрации восстанавливающегося вещества. С ростом концентрации деполяризатора высота дополнительной волны растет, достигает предела, и обычно, хотя и не всегда, лишь после этого появляется и начинает увеличиваться основная волна восстановления. [c.126]

    Рассмотренное явление связано с существованием скрытой волны восстановления анион-радикалов ацетофенона. Начиная с [c.245]

    В области потенциалов второй волны восстановления бензальдегида и других ароматических альдегидов и кетонов происходит присоединение к исходной молекуле второго электрона, в средах с низкой протоно-донорной активностью, отвечающее прямому восстановлению анион-радикалов в дианионы  [c.255]

    Осуществление двух параллельных замедленных процессов превращения анион-радикалов, теоретически проанализированное С. Г. Майрановским, естественно сказывается на поляризационных характеристиках второй волны восстановления упомянутых соединений меняется форма волны, в зависимости ог изменения различных кинетических параметров наблюдается сдвиг ее потенциала полуволны /2. [c.256]

Рис. 7.20. Зависимости потенциала полуволны первой I) и второй (2) волн восстановления бензальдегида от его концентрации в растворе (М) ацетатный буфер с рн 4,65 Рис. 7.20. <a href="/info/68508">Зависимости потенциала</a> полуволны первой I) и второй (2) <a href="/info/305854">волн восстановления</a> бензальдегида от его концентрации в растворе (М) ацетатный буфер с рн 4,65
    Сопоставляя влияние одних и тех же факторов — концентрации реагента, скорости вращения или периода капания электрода, константы скорости димеризации промежуточных продуктов— на значения потенциалов полуволны первой и второй катодных волн восстановления ароматических карбонильных соединений, можно сделать вывод, что все они действуют иа 1/2 и E i4 в противоположных направлениях. Пример зависимости потенциалов полуволны первой и второй волп восстановления бензальдегида в водных растворах на ртутном капельном электроде от концентрации бензальдегида представлен на рис. 7.20. [c.258]

    Роль гомогенных химических реакций в электрохимической кинетике была выявлена впервые в ходе полярографических измерений на капельном ртутном электроде (Р. Брдичка и К. Визнер). При полярографическом восстановлении некоторых слабых органических кислот при небольших pH наблюдается лишь волна восстановления недиссоциированных молекул этих кислот. При увеличении pH высота этой волны уменьшается, а при более отрицательных потенциалах появляется волна восстановления анионов кислот. Высота первой волны ниже, чем рассчитанная по уравнению Ильковича для концентрации недиссоциированных молекул кислоты в растворе. Ток этой волны практически не зависит от высоты ртутного столба, что указывает на его кинетическую природу. Последнее подтверждается также высокой энергией активации процесса, соответствующего первой волне. Эти факты говорят [c.244]


    Почти все альдегиды восстанавливаются на ртутном капельном электроде. В процессе восстановления одних альдегидов участвуют два электрона на каждую молекулу (например, формальдегид, ацеталь-дегид, масляный альдегид) в процессе восстановления других — один электрон (бензальдегид и другие ароматические альдегиды в кислой среде). Большинство альдегидов образует одну волну восстановления. [c.175]

    Адсорбционные токи. Адсорбционные токи возникают при адсорбции деполяризатора или продукта его электрохимического превращения на капельном электроде. Если адсорбируется окисленная форма, а восстановленная форма не адсорбируется, то в ходе электродного процесса необходимо дополнительно компенсировать энергию адсорбции. В этом случае, следовательно, вообще требуется большая энергия, чем при восстановлении свободных молекул. В результате на полярограмме возникают две волны. Первая соответствует восстановлению свободных молекул и определяется диффузией, вторая вызвана восстановлением адсорбированных частиц и возрастает до предельного значения, которое соответствует электроду с полностью покрытой вследствие адсорбции поверхностью. В случае адсорбции восстановленной формы возникает адсорбционная предволна, так как затем при восстановлении затрачивается меньшая энергия, чем при восстановлении свободной формы. По достижении предельной величины адсорбционной предволны при более отрицательном значении потенциала возникает волна восстановления свободной формы (рис. 4.14). [c.127]

    На классических полярограммах тиокарбамид не дает катодных волн восстановления. На полярограммах с линейной разверткой напряжения в щелочных растворах тиокарбамида наблюдается катодный пик, высота которого определяется содержанием тиокарбамида в растворе и зависят от потенциала начала поляризации ртутного электрода. Электродный процесс обусловлен взаимодействием тиокарбамида с ионами ртути. Конечный продукт взаимодействия Нд5 или Нд 2 сконцентрирован на поверхности ртутной капли и при больших скоростях изменения полк )изуюи его напряжения восстанавливается в катодном цикле согласно уравнению  [c.151]

    Авторы уделили много внимания выяснению природы получаюш,нхся при окислении пропана, помимо перекиси водорода, еще и незначительных количеств органических нерекисей. Полярографирование этих перекисей показало, что их волна восстановления идентична с волной восстановления гидроперекиси метила и диоксиметилперекисиЧ [c.262]

    Среди продуктов реакции, растворимых в воде, были найдены в значительном количестве перекиси и совершенно не найдены альдегиды. Перекиси состоят приблизительно на 80% из алкильной гидроперекиси и па 20% из Н2О2. То, что обнаруженная органическая перекись является гидроперекисью (СзН,ООН), следует из того, что ее потенциал восстановления на ртутном капельном электроде равен 0,2 в (см. стр. 229). Полное отсутствие альдегидов на всем протяжении реакции было доказано отсутствием их волн восстановления на полярограммах. Менее определенным [c.453]

    Рйс. Д. 109. Полярографические волны восстановления киморода в синтетическом уксусе (а) и бродильном уксусе (б). [c.292]

    Роль гомогенных химических реакций в электродных процессах была впервые выяснена в ходе полярографических измерений на капельном ртутном электроде на примере процессов, скорость которых определяется предшествующей реакцией рекомбинации анионов кислот с ионами водорода (Р. Брдичка, К. Визнер). При достаточно низких значениях pH на полярограммах электровосстановления пи-ровиноградной и фенилглиоксалевой кислот на ртути имеется лишь одна волна, отвечающая электровосстановлению недиссоциированных молекул кислоты (рис. 165). При увеличении pH высота волны уменьшается и одновременно появляется при более отрицательных потенциалах волна восстановления анионов кислоты. Высота первой волны оказывается ниже, чем рассчитанная по уравнению Ильковича, исходя из соответствующей концентрации недиссоциированных молекул кислоты в растворе. Кроме того, ток этой волны не зависит от высоты ртутного столба кне, тогда как величина предельного диффузионного тока пропорциональна / /lнg. Наконец, ток первой волны резко возрастает при увеличении температуры, так что энергия активации процесса, соответствующего первой волне, оказывается значительно выше, чем энергия активации процесса диффузии. Все эти факты указывают на то, что ток первой волны имеет кинетическую природу, а именно, обусловлен медленным протеканием реакции про- [c.305]

    В соответствии с этой схемой на капельном ртутном или на вращающемся дисковом электроде в щелочных растворах наблюдаются две одноэлектронные волны, причем первая из них отвечает обратимому восстановлению кетонов с образованием анион-радикалов, а вторая — необратимому присоединению электрона к анион-радикалу. Такие волны видны, например, на поляризационной кривой электровосстановления бензофенона (рис. 203). При фиксированном потенциале диска на кольцевом электроде наблюдается ток окисления анион-радикалов, причем максимальный выход анион-радикалов соответствует области потенциалов предельного тока диффузии первой волны. Было показано, что ток на кольце не протекает при отсутствии катодного тока на диске и что он не может быть вызван окислением каких-либо других компонентов раствора, кроме анион-ра-дикалов. Образование анион-радика-лов было зафиксировано при помощи дискового электрода с кольцом также, когда на дисковом электроде наблюдается только одна многоэлектронная волна восстановления органического вещества. Анион-радикалы бензальдегида, ацетофенона, бензоилферроцена и ферроценилаль-дегида были зафиксированы в водных средах, что не удавалось сделать при пЪмощи метода ЭПР из-за короткого времени жизни анион-радикалов. Наряду с этим методом вращающегося дискового электрода с кольцом удалось обнаружить образование комплексов с переносом заряда между анион-радикалом и исходной молекулой карбонильного соединения. [c.401]

    Волна восстановления в тех же условиях параизомера питроани-лина отвечает присоединению шести электронов и образованию парафенилендиамина. Причина этих различий — в образовании во втором случае в результате дегидратации парагидроксилами-ноанилина промежуточного продукта хиноидного типа (хинон-диимина) и в невозможности возникновения подобной структуры для метаизомера. Поскольку хинондиимин восстанавливается легче исходного соединения, суммарный процесс оказывается шестиэлектронным  [c.192]

    На рис. 7.9 приведена поляризационная кривая окисления на кольцевом электроде системы диск — кольцо промежуточных продуктов одноэлектронного восстановления этилового эфира коричной кислоты на диске в растворе диметилсульфоксида (ДМСО). Волна / представляет собой анодную ветвь единой обратимой катодно-анодной волны, катодная ветвь которой полностью аналогична волне восстановления исходного вещества в анион-радикалы на дисковом электроде. Это с несомненностью доказывает принадлежность волны / процессу окисления анион-радикалов восстанавливаемого соединения. Анодная волна II характеризует окисление димерных карбанионов или, что более вероятно, их монопротонированной формы КгН- Подобно анион-радикалам, частицы R2 " также нестабильны и претерпе- [c.239]

    Устранить реакцию автопротонирования можно либо введением в раствор постороннего донора протонов (концентрация добавки зависит от величины ее рК), либо изменением строения молекулы деполяризатора и исключением из ее состава подвижных атомов водорода. Так, при восстановлении ацетофенона в растворах ДМСО, содержащих 10% воды, поляризационная кривая имеет не одну, а две равновысокие волны (кривая / на рис. 7.14). Появление волны восстановления анион-радикалов в дианионы связано с практическим прекращением реакции (7.38) в присутствии в растворе достаточного количества воды, которая полностью принимает на себя функцию протонирующего дианионы агента [c.246]

    Восстанавливающееся органиче-ское вещество может выступать в роли донора протонов не только по отношению к продуктам собственного восстановления, но и взаимодействовать с другими оснощаниями, присутствующими в растворе. Образующиеся в ходе электролиза бензофенона СбН5СОСбН5 в апротонном растворе дианионы отрывают протоны от молекул труднее восстанавливающегося кетона 2,4,6-триметилацетофенона (СНз)зСбН2СОСНз, превращая их в электрохимически неактивные карбанионы. Поэтому с ростом концентрации бензофенона в растворе высота волны восстановления 2,4, 6-триметилацетофенона постепенно снижается и волна полностью исчезает в присутствии избытка бензофенона (рис. 7.15). [c.247]

Рис. 7.15. Зависимость высоты волны восстановления 2,4,6-триметилацетофенона (2-10-3 М) на дисковом электроде от концентрации бензофенона в растворе Рис. 7.15. <a href="/info/144883">Зависимость высоты</a> <a href="/info/305854">волны восстановления</a> 2,4,6-триметилацетофенона (2-10-3 М) на <a href="/info/15341">дисковом электроде</a> от концентрации бензофенона в растворе

Смотреть страницы где упоминается термин Волна восстановления: [c.142]    [c.132]    [c.142]    [c.341]    [c.342]    [c.387]    [c.320]    [c.356]    [c.341]    [c.342]    [c.387]    [c.244]    [c.245]    [c.250]   
Электрохимия органических соединений (1968) -- [ c.50 , c.51 ]




ПОИСК







© 2025 chem21.info Реклама на сайте