Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинк, коррозия

    Коррозионная активность сернистых соединений зависит от их строения. Наиболее агрессивны сероводород, сера и меркаптаны. Сероводород корродирует цинк, железо, медь, латунь и алюминий. Сера, если она имеется в свободном состоянии в топливе, почти мгновенно взаимодействует с медью и ее сплавами, образуя сульфиды, вследствие чего наряду с коррозией металла, приводящей к потере его массы, наблюдается образование отложений на металле. Коррозия металлов меркаптанами определяется их концентрацией в топливе и строением. Ароматические меркаптаны более коррозионно-агрессивны, чем алифатические, при этом бициклические меркаптаны агрессивнее моноциклических. [c.104]


    При -работе коррозионного гальванического элемента в раствор переходят ионы металла практически только от более активного компонента данной гальванической, пары, заряжающегося при этом отрицательно (например, цинк в паре Zn — Си). В учении о коррозии металлов эти участки поверхности называются анодными. Анодный процесс заключается в растворении металла (окислении его)  [c.455]

    Тл. 2. Цинк. Коррозия цинковых покрытий [c.220]

    Гл. 2. Цинк. Коррозия цинка и его сплавов в различных средах [c.226]

    Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделии, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение миогих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. стр. 571). Значительное количество цинка расходуется для изготовления гальванических элементов. [c.621]

    При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода иа этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, цинк, кадмий). [c.274]

    Однако водород выделяется на цинке с большим перенапряжением, что тормозит эти процессы и практически позволяет использовать цинк в качестве отрицательного электрода. Если на поверхности пинка будут присутствовать металлы, на которых перенапряжение для выделения водорода меньше, чем на. цинке (например, медь, железо), то водород будет выделяться на этих металлах, и коррозия цинка резко усилится. Появление таких металлов может иметь место при использовании цинка или электролита недостаточной чистоты. Цинк, как металл электроотрицательный, вытесняет более благородные металлы из раствора, и они осаждаются на его поверхности, усиливая саморазряд. Наличие в электролите железа н других металлов переменной степени окисления может вызвать саморазряд как отрицательного, так и положительного электродов. На положительном электроде ионы железа будут окисляться до Ре +, на что будет расходоваться МпОг. Диффундируя к отрицательному электроду, ионы Ре + будут в контакте с цинком восстанавливаться до Ре + (или до металла), на что будет расходоваться цинк. Коррозия цинка в присутствии кислорода может происходить и без выделения водорода  [c.326]


    Гл. 2. Цинк. Коррозия цинка с выделением и без выделения водорода [c.206]

    Коррозия начинается с поверхности металла и при дальнейшем развитии этого процесса распространяется вглубь. Металл при этом может частично пли полностью растворяться (например, цинк в соляной кислоте) или же могут образоваться продукты коррозии в виде осадка на металле (например, ржавчина при коррозии железа во влажной атмосфере, гидрат окисла при коррозии цинка в воде). Иногда коррозионные процессы протекают с изменением физико-мехаиических свойств металлов и сплавов (потерей металлического звука, резким снижением механической прочности вследствие нарушения связи по границам кристаллитов). [c.5]

    Еще большего увеличения скорости коррозии и еще более полного разделения поверхности металла на анодные и катодные участки следует ожидать, когда цинк загрязнен железом. В этом случае [c.496]

    В этих условиях корродирующий технический цинк представляет собой совокупность гальванических микроэлементов, в каждом из которых железо является положительным полюсом, а анодно растворяющийся цинк — отрицательным. Коррозию такого технического металла можно на этом осг овании рассматривать как результат действия локальных гальванических элементов. [c.496]

    Железо, медь, цинк и некоторые другие металлы попадают в бензин в основном в виде продуктов коррозии заводской аппаратуры, резервуаров, трубопроводов и арматуры, деталей системы питания, а также за счет износа перекачивающих средств. Кремний, алюминий и другие элементы попадают в бензин в виде окислов с почвенной пылью. Свинец попадает в бензин в виде продуктов разложения антидетонатора — тетраэтилсвинца. Такие элементы, как натрий, кобальт и другие, могут оставаться в бензине вследствие недостаточной отмывки его после, защелачивания, частичного уноса катализатора и т. д. [c.339]

    Применение. Цинк входит в состав ряда важных сплавов, в частности латуни. В большом масштабе проводят цинкование железа с целью защиты его от коррозии. Цинк —обычный материал для анодов химических источников тока. 2п5 широко применяют в качестве люминофора, это сое,Е1,инение используют также как пигмент в лаках и красках. [c.599]

    Цинк и кадмий — электроотрицательные металлы. Нормальный. электродный потенциал первого — 0,762 в, второго — 0,402 в. Способность к пассивации у цинка и кадмия невелика. И тот и другой металл нашли применение главным образом в виде покрытий для углеродистой стали для защиты ее от коррозии в атмосферных условиях. Цинк нашел также применение в качестве протектора (гл. XIX). [c.265]

    Характерным примером компонентноизбирательной коррозии является обесцинкование латуней. В зависимости от содержания цинка различают однофазные твердые растворы а-латуни (до 39% 2п), а + р-латуни (39—47% 2п) и у-латуни (47—50% 2п). Обесцинкование латуней заключается в том, что в коррозионный раствор, обычно нейтральный или слабокислый, цинк переходит более интенсивно, чем медь. У поверхности латуни накаплива- [c.170]

    Атмосферной коррозии подвергаются металлоконструкции. Методами борьбы с атмосферной коррозией являются окраска и антикоррозионная металлизация. Срок службы лакокрасочных покрытий составляет 3—4 года, покрытий из напыленного металла — 8—10 лет. Для напыления используются в основном цинк и алюминий, которые имеют относительно низкую температуру плавления. Толщина напыленного слоя обычно равна 50—500 мкм. Напыленный слой дополнительно окрапшвается. [c.49]

    Поскольку количество серы в мазутах всегда значительно больше, чем количество ванадия, в качестве эффективных присадок могут использоваться те металлы, сульфаты которых термически менее стабильны, чем ванадаты, так как в противном случае металл будет связан в виде сульфата и не сможет оказать действие на ванадий. Так, кальций, магний и цинк более эффективны, чем барий, поскольку их сульфаты менее стабильны. Весьма эффективны как ингибиторы ванадиевой коррозии кремниевые соединения и силикаты алюминия. [c.332]

    Гл. 2. Цинк. Коррозия цинка без выделения водородй [c.208]

    Действие синтетических поверхности о-а к т и в-ных веществ на о б о р уд о в а н и е. Результатом воздействия этих веществ на оборудование является коррозия, которая может возникнуть на металлических стенах стиральных мащин, выпускных отверстиях умывальников, на оборудовании очистительных станций или в водоснабжающих станциях. Систематические опыты показали, что коррозионное действие растворов чистого алкиларилсульфоната (0,8 г активной части вещества на 1 л) является весьма малым, но оно усиливается при наличии неорганических солей. Самые большие поврежденпя претерпевает цинк, коррозия меди и алюминия намного меньше. [c.162]

    Контактная коррозия наблюдается, например, в теплофикационных установках, когда медные нагревательные змеевики соеди-неп1.1 с железными кипятильниками или трубами. Интенсивная коррозия железа протекает около мест соединения. Однако соотношение между потенциалами контактирующих металлов зависит не только от природы металлов, но также от природы растворенных в воде веществ, от температуры и от других условий и не всегда соответствует взаимному полон<ениЮ металлов в ряду н 1-пряжений. Так, в случае контакта железо — цинк последний интенсивно корродирует при комнатной температуре, но в горячен водо полярность металлов изменяется и растворахься начинает железо. [c.558]


    А. Н. Фрумкиным и В. Г. Левичем было теоретически доказано, что поверхность корродирующего металла остается приблизительно эквипотенциальной и при наличии неоднородностей, если только размеры включений малы, а электропроводность электролита достаточно велика, что подтверждено измерениями Г. В. Акимова и А. И. Голубева (рис. 129). Как видно из рис. 129, наблюдаются заметные изменения потенциала при переходе от одной сбставляющей сплава (анод—цинк, катод — Ре2п,) к другой, но абсолютная величина их невелика. В тех случаях, когда нас интересует только общая величина коррозии, а не распределение ее по поверхности (например, при определении величины само- [c.185]

    Пока слой, покрывающий основной металл, полностью изолирует его от воздействия окружающей среды, принципиального различия между этими двумя видами покрытий не возникает. При нарушении же целостности покрытия создаются совершенно различные условия. Катодное покрытие (например, олово на железе) в этом случае перестанет защищать и, создавая с основным металлом гальванический элемент, усилит своим присутствием его коррозию. Анодное же покрытие (например, цинк на железе) будет лишь само подвергаться разрушению и, разрушаясь, защищать основной металл, несмотря на нарушение целостности покрывающего слоя. Так, всем известно, что ведра и корыта из оцинкованного железа несмотря на царапины и другие повреждения покрывающего слоя, практически не ржавеют. Поэтому требования герметичности для анодного яокрытия не так существенны, как [c.459]

    Использование цинка, кадмия и ртути в технике. Около 40% добываемого цинка используется на цинкование, т. е. покрытие поверхности черных металлов для защиты нх от коррозии. Сам цинк, как у.же указывалось, будучи электрохимически более активным, чем железо, к коррозии вполне. устойчив благодаря образованию на его поверхностп прочной оксидной пленки. Покрытие черных металлов цинком производится различными способами горячим цинкованием, т. е. погружением металла в расплавленный цинк распылением расплавленного циика но поверхности черного металла действием нарами цинка на поверхность черного металла электролитически. Цинковое покрытие даже в случае нарушения его целостности продолжает оказывать на железо защитное действие уже ио электрохимическому ирипиину (см. гл. XX, 12). [c.333]

    Уменьшение pH растворов не-6 8 10 12 pH окислительных кислот обычно приводит также к увеличению растворимости продуктов коррозии, которые не создают защитных пленок на поверхности металла. Растворы с высокими значениями pH (щелочные среды) растворяют металлы, гидраты окислов которых амфотерны, т, е, растворимы в кислотах и щелочах. Такими металлами являются алюминий, цинк, свинец, олово и некоторые другие. При этом в кислотах образуются ионы растворяющихся металлов, а в щелочных растворах — комп./юксные ионы, в то время как самостоятельные катионы металлов в этих растворах отсутствуют. [c.70]

    Одним нз наиболее важных свойств продуктов коррозии является их гигроскопичность. Так, на поверхности меди в атмосфере, загрязненной сернистым газом, выкристаллизовываются продукты коррозии (сернокислая медь), которые интенсивно поглощают влагу и тем самым способствуют усилению коррозии. Гигроскопичны также продукты коррозии никеля, образующиеся при действии на него сернистой кислоты. Хлористый цинк, быстро образующийся на цинке в атмосфере, загрязненной парами соляной кислоты, также весьма гигроскопичен. Р1аоборот, продукты коррозии алюминия, образующиеся в промышленной атмосфере, хорошо предохраняют металл от разрушения даже при наличии в атмосфере сернистого газа. [c.180]

    В начале в раствор переходят одновременно цинк и медь в пропорции, соответствующей составу сплава. Ионы меди затем вторично выделяются из раствора, а образовавшийся осадок меди ускоряет электрохимическую коррозию латуни, как добавочный катод. В результате в раствор переходят ионы цинка, и с течением времени обесцинкование распространяется так глубоко, что приводит к образованию сквозных поврежде11ий латуни. Для уменьшения обесцинкования латуней сплав дополнительно легируют небольшими количествами олова, никеля, алюминия, а чаще всего мышьяка, порядка 0,001—0,012%. Возможный механизм влияния мышьяка — увеличение перенапряжения вторичного выделения меди. [c.253]

    Основные элементы, которыми легируют деформируемые алюминиевые сплавы для обеспечения их упрочнения при термической обработке — медь, кремний, магний, цинк. В некоторые сплавы добавляют литий, церий, кадмий, цирконий, хром и другие элементы. К наиболее важным и распространенным сплавам, упрочняемым закалкой с последующим старением, относятся сплавы систем А1—Си—Mg типа дюралюминий, А1—Мд—51, ави-аль А1—2п—Mg—Си (высокопрочные сплавы Ов бОО— 700 МН/м ), А1—М —2п (самозакаливающиеся свари--ваемые сплавы, сгв=400—450 MH/м ), не требующие термической обработки после сварки, А1—Си—Сс1— (жаропрочные сплавы, Ов = 360—400 МН/м ) после 1000 ч выдержки при температуре 180°С. К высокопрочным сплавам относятся сплавы В93, В95, В96 системы А1—2п—Mg—Си, сплав ВАД23 системы А1—Си—Мп— С(1 и, частично, в зависимости от применяемой термической обработки и вида полуфабриката, сплавы. Д16, Д19, системы А1—Си—Mg, сплав АК8 системы А1—Си—Mg—51. Наибольшей прочностью при комнатной температуре обладают сплавы В93, В95, В96 и ВАД23. Сплавы Д16 и Д19 обладают меньщей прочностью при комнатной температуре, чем сплавы В93, В96, В95. Однако их преимущество заключается в большей жаропрочности и меньщей чувствительности к коррозии. Сплав ВАД23 сохраняет относительно высокие прочностные характеристики после длительных нагревов до 160— 180°С. Исходя из характеристик алюминиевых сплавов следует применять сплавы В93, В95, В96 для конструкций, работающих до температуры 100°С, при этом в конструкции должны отсутствовать концентраторы напряжений, расположенные в плоскости, перпендикулярной к действию силы. Для нагружения конструкций, работаю- [c.49]

    Испытания в естественных условиях замковых резьб, изготовленных из стали 40ХН, показали заметное повышение предела коррозионной усталости соединения после дробеструйной обработки и металлизационного цинкования (рис. П.12). В результате упрочнения предел выносливости резьбы повышается на 75 % Цинк, находящийся в резьбовых зазорах, защищает сталь от коррозионного воздействия среды, уменьшает щелевую коррозию, а также [c.78]


Смотреть страницы где упоминается термин Цинк, коррозия: [c.494]    [c.505]    [c.192]    [c.192]    [c.187]    [c.357]    [c.358]    [c.383]    [c.402]    [c.70]    [c.72]    [c.194]    [c.196]    [c.281]    [c.286]    [c.222]   
Теоретическая электрохимия (1981) -- [ c.360 , c.364 ]




ПОИСК







© 2024 chem21.info Реклама на сайте