Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний контакт с другими металлами

    При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода иа этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, цинк, кадмий). [c.274]


    Соприкосновение магния с другими металлами вызывает усиление коррозии в месте контакта. Наименее опасен контакт с цинком и свинцом (металлы с большим перенапряжением во дорода). [c.109]

    Магний и его сплавы легко подвергаются коррозии. Примеси других металлов в магнии или контакт магния с другими металлами также увеличивают скорость коррозионного разрушения. Поэтому защита магния и его сплавов имеет большое практическое значение. Она осуществляется при помощи оксидных пленок и лакокрасочных покрытий. [c.51]

    Магнит может быть использован в качестве конструкционного материала для аппаратуры, детали которой соприкасаются с водяными парами, содержащими следы фтористого и хлористого водорода в этом случае в продукт вносится меньше загрязнений, чем при использовании аппаратов из никеля или инконеля. Стойкость магния к действию плавиковой кислоты и фтористого водорода обусловлена образованием на поверхности металла защитной пленки фтористого магния. Примерно такой же стойкостью обладают сплавы магния с алюминием типа электрон . При конструировании аппаратуры с применением магния и сплавов на его основе необходимо учитывать, что вследствие низкого электродного потенциала контакт магния с другими металлами вызывает ускорение коррозии. Наиболее опасны в этом отношении контакты магния с медью, никелем, нержавеющими сталями и железом. Крупным недостатком магния является относительно низкая его рабочая температура. [c.270]

    В качестве катализаторов используют как смешанные, так и нанесенные никелевые контакты. В качестве носителя применяют окись кремния и алюминия. Эти катализаторы содержат также окись магния, урана и других металлов. [c.42]

    Коррозией магния и его сплавов при контакте с другими металлами. Алюминиевые сплавы, содержащие магний (например, марки 5050, 5052 и 5056), менее подвержены действию щелочей, которые образуются при работе пары магний—алюминий, и поэтому их можно применять в контакте с магнием. Применим также чистый алюминий. Однако в большинстве случаев магний следует изолировать от других металлов. Например, под головки болтов и винтов нужно помещать непроводящие прокладки большего размера. Благодаря этому увеличивается сопротивление электролита и уменьшается контактная коррозия. [c.355]


    Присутствие в пластовой воде катионов натрия, кальция, магния и других поливалентных металлов, а также анионов хлора, сульфатов и других может вызвать значительнее изменения свойств глинистых корок. В частности, в результате коагуляции активный объем частиц глинистых корок уменьшится, проницаемость корок возрастает и одновременно снизится прочность контакта сцепления цементный камень — глинистая корка, глинистая корка — материнская порода (рис. 30). [c.235]

    Протекторная защита осуществляется присоединением к защищаемому металлу больщого листа, изготовленного из другого, более активного металла — протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте между металлами защищаемый металл (железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железо поляризуется катодно, а цинк [c.692]

    Магний является наиболее анодным металлом в электрохимическом ряду напряжений, поэтому в гальванической паре с другим металлом подвергается ускоренной коррозии. При этом может разрушаться и второй элемент пары. Например, при испытаниях на стенде, расположенном в 25 м от океана в Кюр-Бич, магний, соединенный с алюминием, подвергался анодному разрушению. На алюминии происходила щелочная коррозия, являющаяся результатом катодной реакции. Оба металла при этом корродировали быстрее, чем в отсутствие контакта. [c.160]

    Как было отмечено, алюминий и его сплавы очень чувствительны к контактированию с другими металлами. Самыми опасными являются контакты с более положительными металлами — медью и медными сплавами. В ря.де условий вреден контакт с железом, сталью и коррозионно-стойкой сталью. Контакт с цинком и кадмием в условиях, когда алюминий находится в пассивном состоянии, безвреден и даже несколько защищает алюминий. Магний и магниевые сплавы, несмотря на то, что они имеют значительно более отрицательный потенциал, при контакте с алюминием оказываются также опасными, так как вследствие сильной катодной поляризации алюминия он может перейти в активное состояние под влиянием защелачивания среды (эффект катодной перезащиты алюминия). В результате опасных контактов происходит более существенное разрушение алюминия в электропроводных средах, содержащих ионы хлора. В атмосферных условиях при достаточной влажности отрицательное влияние контактов также может проявляться, хотя и будет распространяться только на поверхность алюминия, непосредственно прилегающую к контакту. [c.265]

    Ч. 4. Коррозия магния и электрона в контакте с другими металлами. М.-Л., Госхимтехиздат, 1933. 25 с. (Труды Всесоюзного научно-исследовательского института авиационных. материалов. Вып. 6). 1000 экз. 60 к. [c.262]

    Такими свойствами не обладают никакие другие металлы и их окислы. Можно, нанример, получить водород при невысокой температуре и с очень большими скоростями при взаимодействии магния с водяным паром, однако для восстановления окиси магния до металла, чтобы снова вернуть его в процесс, потребуются очень высокие температуры (> 1500° С) и большие затраты энергии. Поэтому основной составной частью исследованных нами контактов является железо. [c.111]

    Известно, что в атмосферных условиях контакт титана с другими металлами не влияет на его коррозию. В водопроводной воде коррозия магния в контакте с титаном увеличивается в [c.181]

    Метод протекторов осуществляется присоединением к защищаемому металлу большого листа, изготовленного из другого, более активного металла — протектора. В качестве протектора при защите стальных изделий обычно применяют цинк или сплавы на основе магния. При хорошем контакте между металлами защищаемый металл железо) и металл протектора (например, цинк) оказывают друг на друга поляризующее действие. Согласно взаимному положению этих металлов в ряду напряжений, железо поляризуется катодно, а цинк —анодно. В результате этого на железе идет процесс восстановления того окислителя, который присутствует в воде (обычно растворенный кислород), а цинк окисляется. [c.553]

    Магний — очень электроотрицательный металл (1 ° = —2,37 в> и потому из конструкционных материалов наиболее коррозионно активен. Склонность к пассивированию позволяет ему быть стойким в растворах хромовой кислоты. Однако он не стоек в других кислотах, за исключением плавиковой, в которой на поверхности металла образуется нерастворимая в этих условиях защитная пленка, состоящая из Mg 2. Магний стоек в растворах аммиака и щелочей (до 50—60° С). Фосфаты образуют защитную пленку на магнии и его сплавах, повышая стойкость от разрушения в воде и водных растворах солей. Магний не стоек в органических кислотах, в нейтральных солевых растворах и даже в воде, особенно, если она содержит углекислоту. Хлорсодержащие флюсы при попадании в сплав сильно повышают скорость коррозии отливки. Контакт с электроположительными металлами, а также загрязнение магния железом, никелем, медью и другими металлами с низким перенапряжением водорода повышают скорость коррозии. Цинк, свинец, кадмий,-марганец и алюминий менее опасны в этом отношении. В атмосферных условиях в отличие от растворов электролитов магний корродирует с кислородной деполяризацией. Легко окисляется на воздухе при повышенных температурах. [c.57]


    Магний и его сплавы легко подвергаются коррозии, которая усиливается, если магний находится в контакте с другими металлами. Одним из эффективных методов защиты магния и его сплавов от коррозии является оксидирование. Часто оно используется в сочетании с последующим лакокрасочным покрытием. [c.71]

    Высокая коррозионная активность магния и его сплавов, в особенности в атмосфере повышенной влажности и при контакте с некоторыми другими металлами, делает обязательным приня-256 [c.256]

    На практике большое значение имеет гальваническая коррозия магния, т. е. коррозия, которой при контакте двух металлов в общем электролите подвергается анодный элемент такой пары. Это объясняется тем, что магний является анодным металлом по отношению ко всем другим конструкционным материалам в большинстве электролитов. Ниже для сравнения приводятся стандартные электродные потенциалы магния и некоторых других металлов, В (н. в. э.)  [c.126]

    Интенсивной коррозией магния и магниевых сплавов при контакте с другими металлами. Алюминиевые сплавы, в состав которых входит некоторое количество магния (например типы 5050, 5052, 5056), меньше других разрушаются под действием щелочной среды, возникающей при работе пары Mg—А1, и, следовательно, могут применяться в контакте с магнием. Удовлетворителен также и чистый алюминий. Магний следует изолировать от контакта с другими металлами, например головками болта или винта, изоляционными прокладками. Эти прокладки, увеличивая сопротивление в электролите, уменьшают влияние контакта. [c.286]

    Магний и его сплавы электроотрицательны (анодны) и окисляются (переходят в раствор), находясь в электрическом контакте с другими металлами в электролите. Коррозия магния подчиняется главным образом катодному ограничению, т. е. поляризация постороннего катода, находящегося в контакте [c.147]

    Контакты с боляшой удельной поверхностью и высоким содержанием никеля склонны к спеканию и коагуляции малких частиц металла. Поэтому в них вводят стабилизаторы, предохраняющие кристаллиты никеля 05 спекания в процессе работы, которы1,1и служат оксиды алши-ния, хрома, магния и другие огнеупоры, состоящие из мелких кристаллитов 114]. Стабилизирующее влияние оказывает и носитель, в качестве которого применяют огнеупорные окислы. К выбору носителя подходят с большой осторожностью, так как условия эксплуатации ка- [c.39]

    Магний и его сплавы еще в большей степени, чем алюминий, подвергаются коррозии, особенно в атмосфере влалшого воздуха, при контакте с другими металлами. Изделия из магния и его сплавов корродируют не только в процессе эксплуатации, по также при транспортировке и хранении [19, 44]. [c.221]

    Магний еще в большей степени, чем алюминий, склонен к сильному повышению скорости коррозии под влиянием посторонних примесей в структуре сплава, а также контакта с другими металлами. Это объясняется, с одной стороны, сильно отрицательным электрохимическим равновесным и стационарным потенциалом магния, более отрицательным, чем у других конструкционных металлических сплавов. С другой стороны, магний и его сплавы так же, как и алюминий, имеют отрицательный дифференциальный эффект, т. е. увеличивают скорость саморастворения под влиянием анодной поляризации в растворах хлоридов. Поэтому даже незначительные загрязнения чистого магния металлами, имеющими низкое перенапряжение водорода, такими, как Fe, Ni, Со, u, сильно понижают его коррозионную стойкость. Установлено, например, что скорость коррозии технического магния (чистоты 99,9%) в 0,5 и. растворе Na l в сотни раз больше, чем магния высокой чистоты (99,99 %). В связи с этим даже для технического магния (марки Мг—96) чистоты 99,96 % установлены предельные концентрации примесей, % 0,002 Си 0,004 Fe  [c.272]

    Мелкие детали из магния можно легко обрабатывать в колоколах и барабанах, обычно применяемых для других металлов. Цинкование лучше всего осуществлять в колоколе или барабане, медленно или периодически вращающемся во время осаждения. Барабаны должны быть электрически йзол-ированы от корпуса ванны для обеспечения правильного образования цинкового покрытия. Никаких затруднений при последующем меднении оцинкованных деталей как от истирания цинкового покрытия, так и от нарушений электрических контактов не наблюдалось. Гальванические покрытия вследствие незначительной массы магниевых деталей во время процесса гальванизации истираются меньше. Покрытия из меди, никеля, черного никеля могут быть нанесены в обычных устройствах для гальванических покрытий мелких деталей. Блестящее никелирование в колоколе или барабане позволяет вести последующее хромирование в стационарной ванне без полирования никелевого покрытия. [c.320]

    Наличие хлора в латексе может привести к коррозии, поэтому при склеивании неметаллических материалов с металлами их следует применять весьма осторожно. Введение в состаг клеев 3—5% гидроксида магния существенно подавляет коррозию в случае контакта пленки клея с алюминиевыми сплавами или другими металлами. Одновременно гидроксид магния является вулканизующим агентом. Клеи на основе этих латексов применяют главным образом для склеивания фольги с бумагой или с различными тканями, пленок на основе виниловых полимеров со стеклотканями и т. д. [c.63]

    Другие исследователи, работавшие в этой области [24, 25], запатентовали методы, экономически более выгодные. Они применяли катиониты для концентрирования солей магния из морской воды или других растворов. Согласно одному из этих патентов, растворы, содержавнгие ъ I л 0,01—0,4 грамматома магния наряду с 0,02—0,16 грамматома других металлов, пропускали через слой катионита, который затем регенерировали раствором другой соли (не магниевой) с концентрацией выше 1,8 н. Здесь может быть применен как водородный, так и натриевый цикл, но последний предпочтительнее. С помощью катионита соотношение Mg/Na в растворе изменялось от 0,2 до 0,67 и более. Для получения оптимальных результатов оказалось необходимым обеспечить довольно длительное время контакта, высокие концентрации регенерирующих растворов и отношение высоты слоя к диаметру ионообменной колонны не менее 5. [c.266]

    Сплавы магния с алюминием известны под общим названием электрон . Они обладают хорошими литейными свойства и и низким удельным весом (<2,0). Коррозионная стойкость магниевых сплавов не превышает стойкости чистого магния. Кроме того, сплавы типа электрон при действии механической нагрузки склонны к межкристаллитной коррозии. При конструировании аппаратуры с применением магниевых сплавов необ.ходимо учитывать, что, вследствие низкого электродного потенциала магния, при контакте этих сплавов с другими металлами коррозия магния всегда ускоряется. Наиболее опасным является контакт с медью, никелем, нержавеющими сталями и железом. Контакт с цинком и кадмием ускоряет коррозию магния в меньшей степени. В местах контакта металл Должен быть защищен ог коррозии путем ь анесения неметаллического покрытия. [c.138]

    Коррозионное поведение в промышленных атмосферах различается не так сильно, а кроме того, практическая ценность более высокой коррозионной стойкости материала вначительно снижается в условиях, когда изделия находятся в электрическом контакте с другими, более катодными металлами. Например, стальные болты, даже оцинкованные или кадмированные, оказывают значительно более сильное влияние на коррозию магния в местах соединений, чем повышенное содержание локальных катодов в иенее чистых сплавах. Таким образом, электрохимическая коррозия высокочистых сплавов в местах контакта с другими металлами не намного меньше, чем коррозия сплавов обычной чистоты. Высокочистые сплавы все же находят свое применение. В тех местах, где они могут использоваться без соединений с другими металлами, эти материалы проявляют присущую им более высокую стойкость в морской воде по сравнению с обычными магниевыми сплавами. [c.129]

    Контактная коррозия. Разрушение этого вида возникает в случае, когда два металла с различными электродными потенциалами находятся в контакте в коррозионной среде. При этом металл с более низким потенциалом становится анодом и вследствие этого за счет другого металла (катода) подвергается сильному разрушению. Степень разрушения металла (анода), находящегося в контакте с металлом (катодом), зависит от отношения их площадей. На рис. 8 показаны образцы стали Х18Н10Т и магния, испытанные во влажной атмосфере. Поскольку магний по сравнению с нержавеющей сталью имеет более отрицательный потенциал, он корродирует сильнее. [c.114]

    В нефтепроводах коррозия также может иметь место особенно в низких местах, если трубопровод пересекает долину, так как в этом случае нефть и вода находятся одновременно в контакте с металлом. Но главные неприятности возникают в дестилляционных аппаратах, крекинг-установках и резервуарах для хранения нефти, где газообразный сероводород (а также хлористый водород, если вода содержит хлористый магний) приходит в соприкосновение с крышками этих устройств. Источником хлористого водорода является соленая вода и поэтому его присутствие можно избегнуть путем отделения воды от нефти. Во время дестилляции и крекинга появление коррозионно активных кислых паров часто предупреждается употреблением щелочи. Джиллет описывает применение с этой целью извести, что увеличивает время продолжительности жизни труб в самой горячей части дестилляционного устройства более чем на год. Вейсель-берг также нашел, что добавка извести (0,1% к сырой нефти) очень полезна при дестилляции и увеличивает время продолжительности жизни змеевиков и других угрожаемых деталей. Как защитное средство рекомендуется также каустическая сода. Эглоф пишет При нейтрализации сероводорода, образующегося при крекинге нефти, с высоким содержанием серы, было установлено, что каустическая сода снижает коррозию до 50%. Применение каустической соды не является только экспериментальным этот метод оказал реальную помощь более чем 10 нефтеочистительным заводам. Употребление каустической соды в данное время вошло в повседневную эксплоатационную практику нефтеочистительных заводов, имеющих крекинг-установки . Нельсон жалуется на то, что каустическая сода вызывает появление окалины и засорение труб и поверхностей выпарителей, однако в настоящее время этот способ широко применяется без каких-либо серьезных затруднений. Несколько лет назад рекомендовали аммиак, но оказалось, что он имеет сомнительную ценность вследствие диссоциации избыток аммиака действует на медные сплавы, если таковые применяются в конструкции. В общем, правильный выбор материала имеет большое значение. Применяемые высокохромистые стали (с содержанием хрома свыше 25%) и хромоникелевые стали 18/8 оказались в общем удовлетворительными, но стоимость их высока. [c.506]


Смотреть страницы где упоминается термин Магний контакт с другими металлами: [c.186]    [c.317]    [c.450]    [c.143]    [c.177]    [c.143]    [c.177]    [c.364]    [c.47]    [c.164]    [c.63]    [c.516]    [c.29]   
Коррозия пассивность и защита металлов (1941) -- [ c.659 ]




ПОИСК





Смотрите так же термины и статьи:

Другие металлы

Контакт с другими металлами

Металлы магнием



© 2025 chem21.info Реклама на сайте