Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород как агрессивная сред

    Реагенты ИКБ-4В, И-1-В, КИ-1 в сточных водах. Сточные воды в системе добычи нефти — наиболее агрессивные среды, это обусловлено наличием остаточного газа, механических примесей, растворенных солей, кислорода, сероводорода, продуктов коррозии. [c.217]

    Химическая коррозия вызывается непосредственным действием на металл агрессивной среды. Чаще всего такой средой являются сухие газы, действующие на металл при высоких температурах (например, в двигателях внутреннего сгорания, в аппаратуре синтеза аммиака и др.). При температуре выше 350 °С сероводород вступает в непосредственное химическое соединение с железом, вследствие чего образуется сернистое железо  [c.171]


    Свинец характеризуется низкой температурой плавления (327°С), низкой прочностью и высокой пластичностью. Он применяется для защиты поверхностей стальных аппаратов, соприкасающихся с агрессивной средой (слабых водных растворов, содержащих углекислоту, сероводород, соли). Защищаемая поверхность покрывается листовым свинцом толщиной 2—5 мм или подвергается гомогенному освинцованию, т. е. наплавлению свинцового слоя толщиной 4—6 мм. Перед освинцеванием направляемая поверхность должна быть предварительно покрыта оловом. [c.34]

    Золото — коррозионностойкий металл, не разрушается кислотами и щелочами и не окисляется даже при высокой температуре, в противоположность серебру не реагирует с сероводородом и другими серосодержащими соединениями, обладает хорошей тепло- и электропроводностью, не изменяющейся во времени даже в агрессивной среде. Полированная поверхность золота имеет высокий коэффициент отражения света. Недостатками чистого золота являются малая твердость и износостойкость. Для повышения физико-механических свойств золотые покрытия леги-, руют другими металлами. [c.424]

    Золото обладает высокой стойкостью против коррозии и окисления при высоких температурах, не растворяется в кислотах и щелочах, не реагирует с сероводородом и другими серосодержащими соединениями. По электро- и теплопроводности, переходному сопротивлению покрытия золотом несколько уступают серебру, но эти свойства, так же как и внешний вид его, не изменяются со временем, в агрессивных средах и в условиях смены низких и высоких температур (термоудар). [c.324]

    Зарубежные специалисты считают [45], что более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит в результате появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение защитных пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствует неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и т. п. в условиях, казалось бы, исключающих появление этих соединений. Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетания аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов. Участие в процессе коррозии микроорганизмов снимает известные ограничения условий его протекания по [c.54]


    На оборудование для добычи нефти и газа действует агрессивная среда, содержащая углеводороды и пластовую воду, в которой присутствуют хлориды, сульфаты и органические кис лоты, а также до 10% сероводорода и 10% двуокиси углерода. [c.127]

    Сухие кислород и сероводород при комнатной температуре не взаимодействуют со сталью, алюминием, свинцом и цинком, однако даже небольшое содержание влаги сильно повышает агрессивность среды. При повышении температуры взаимодействие активизируется. [c.76]

    До разрушения сталь выдерживает определенное число циклов нагружения. Оно уменьшается с увеличением приложенной нагрузки, твердости стали и агрессивности среды (рис. 9.46). При бурении скважины усталостное разрушение значительно ускоряется растворенными солями, кислородом, углекислым газом и сероводородом, так как у основания трещины образуется анод, а на поверхности — катод (рис. 9.47). Таким образом, распространение трещины ускоряется в результате перехода ионов металла в раствор у основания трещины. Коррозионноусталостные трещины являются главной причиной промывов и поломок труб. [c.389]

    Алюминий обладает высокой стойкостью во многих коррозийных средах (азотной, уксусной и разбавленной серной кислотах при комнатной температуре, в нафтеновых кислотах, сухом и влажном сероводороде и других агрессивных средах), но плохо противостоит соляной кислоте, растворам щелочей, аммиака и др. [c.36]

    Запатентован способ ингибирования и предотвращения коррозии черных металлов в агрессивных средах при нефте-и газодобыче в присутствии сероводорода и диоксида углерода, слабых неорганических и органических кислот с помощью бенза-золов, которые применяются в количестве 0,001...0,100 %, предпочтительно 0,0015...0,0250 %. Последние получают конденсацией производных анилина и лактама при температуре 185...260 С в присутствии толуолсульфокислоты. [c.332]

    Коррозионное старение. По механизму и скорости протекания коррозионное старение аналогично озонному и наблюдается при действии на резину различных агрессивных сред (кислот, щелочей, сероводорода н др.). [c.177]

    В табл. П1-6 указаны марки стали, применяемой для изготовления труб в зависимости от условий среды -давления и температуры. Толщина стенки труб зависит от диаметра и расчетного давления и составляет 2,5...75 мм. В отдельных случаях при работе в агрессивной среде хорошо зарекомендовали себя трубы, изготовленные из неуглеродистой стали прочность таких труб обеспечивается за счет увеличения их толщины. Так, для перекачки газа, содержащего до 20% сероводорода, применяют трубы, изготовленные из низкоуглеродистой стали, толщина стенки достигает 220 мм. [c.140]

Таблица 4 Пределы колебания pH и содержания сероводорода и хлоридов в агрессивной среде Таблица 4 Пределы колебания pH и <a href="/info/146811">содержания сероводорода</a> и хлоридов в агрессивной среде
    Патент США, № 3989459, 1976 г. Описывается метод защиты стального оборудования от коррозии в коррозионно-активной среде, содержащей воду, аммиак и сероводород. Эта агрессивная среда, содержащая значительные концентрации аммиака л сероводорода, образуется при очистке тяжелых нефтепродуктов. [c.90]

    В газовой фазе сероводород и аммиак не взаимодействуют между собой при высокой температуре, но при понижении температуры они осаждаются в виде гидросульфида аммония на поверхности различного оборудования, например, в теплообменниках. Для защиты аппаратуры от этого осадка образовавшийся гидросульфид аммония растворяется и удаляется водой. Однако эта жидкая фаза, состоящая из воды, сероводорода и аммиака, является очень коррозионно-активной. До сих пор не найдено достаточно эффективного ингибитора коррозии стали в такой агрессивной среде. [c.90]

    В теплообменниках наиболее агрессивной средой яаляется регенерированный раствор, при этом интенсивнее корродируют высокотемпературные секции. Это вызывается неполной отпаркой кислых газов. Для предотвращения коррозии содержание сероводорода [c.150]

    Аустенитно-ферритные стали обладают повышенным сопротивлением всем видам коррозии. Сопротивляемость коррозии в морской воде и в условиях воздействия сероводорода послужила основанием для применения этих сталей при изготовлении конструкций морских платформ для добычи нефти и газа, магистральных и технологических тр убопроводов. Они имею повышенную стойкость против межкри-сталгшгной корро.зии хорошо работают в агрессивных средах фосфорной, муравьиной, молочной, уксусной и других кислотах, а также в условиях синтеза мочевины. [c.258]


    Алитирование хромистых сталей позволяет значительно расширить область их применения при повышенных температурах в агрессивных средах, содержащих сероводород. Коррозионная стойкость алитированных 3%-ных хромистых сталей в чистом сероводороде при 500—550 °С выше коррозионной стойкости стали 12Х18Н10Т. Для изготовления трубчатых змеевиков печей, а также для коммуникационных трубопроводов и пучков трубчатых теплообменников в США и некоторых других странах на установках гидроочисткн нефтепродуктов используют в промышленном или опытном масштабе алитированные трубы из стали 15Х5М взамен труб из дорогой стали типа 18—8. Опыт подтверждает целесообразность такой замены материала. [c.27]

    На возникновение коррозиониого растрескивания металлов и на его интенсивность оказывают большое влияние характер агрессивной среды, ее концентрация, температура, структурные особенности металла и др. Наибольшее число разрушений аппаратов из углеродистых и низколегированных сталей наблюдается в растворах щелочей, азотнокислых солей, влажном сероводороде. Известны также отдельные случаи разрушения этих сталей в азотной кислоте, смеси азотной кислоты с серной кислотой и других средах. [c.102]

    Коррозионная агрессивность среды определяется физико-химическими свойствами углеводородного и водного компонентов системы, их составом, количественным соотношением, наличием растворенных газов (сероводорода, углекислого газа, кислорода), в значительной степени зависит от условий разработки и эксплуатации нефтяных и газовых месторождений, типа скважины, способа добычи, температуры, давления, скорости движения среды и др. Совокупность всех факторов оказы вает различное влия1ние на интенсивность коррозии. При прочих равных условиях решающее. влияние на коррозионную агрессивность среды оказывает сероводород. Поэтому принято классифицировать нефтяные и газовые скважины на содержащие и не содержащие сероводород. [c.11]

    Коррозионные, антикоррозионные свойства растворов, которые могут соответственно вызьгеать коррозию бурильного инструмента (стальные трубы, трубы из сплавов алюминия) и защищать его от воздействия агрессивных сред (сероводород, углекислый газ, минерализованные воды). Для качественной оценки возможного коррозионного действия измеряется водородный показатель pH буровых растворов, характеризующий кислотность (рН<7) или щелочность их (рН>7). При рН<7 интенсифицируется коррозия стальных труб, а при рН>10 — труб из алюминиевых сплавов. [c.39]

    С сероводородом протекают также коррозионные процессы, вызываемые реакциями окисления—восстаиовления. Трехвалентное железо, содержащееся в алюмоферритных фазах AFm, AFi и гид-югранатов, восстанавливается сероводородом до двухвалентного. Три этом многие составные части структуры цементного камня разлагаются. Сероводород, в свою очередь, окисляется в ходе этих процессов с образованием сульфатов, которые вызывают сульфатную коррозию. Поэтому сероводородная агрессивная среда обладает многосторонним действием и защита от нес особенно трудна. [c.127]

    Свинец характеризуется низкой температурой плавления (327 °С), низкой прочностью и высокой пластичностью, поэтому в качестве конст-рукщюнного материала непригоден. Его применяют для защиты поверхностей стальньк аппаратов, соприкасающихся с агрессивной средой (слабые водные растворы, содержащие углекислоту, сероводород, соли). [c.16]

    Целесообразность применения мягкой резины, полуэбонита или эбонита определяют для каждого конкретного случая. Гуммировочные полуэбониты и эбониты обладают большей по сравнению с мягкой резиной химической стойкостью при повышенных температурах. Эти материалы менее склонны к окислению, набуханию и менее проницаемы. Поэтому при выборе обкладки для аппаратов, работающих в агрессивных средах при повышенных температурах под давлением или вакуумом и при наличии газовой фазы, предпочтение отдают по-луэбонитам и эбонитам. Например, в сернокислотных средах с примесями сероводорода и сероуглерода хорошо работают обкладки из полуэбонита 1752 по подслою полуэбонита 1751. В среде влажного и сухого хлора удовлетворительно работают обкладки из эбонита [c.146]

    Отбеняинмвающая колонна работает в более тяжелых условиях, так как вверху нее создаются благоприятные условия для конденсации водяных паров и образования агрессивных сред. Одиако при температуре 120—140° С, имеющейся в испарительном пространстве отбензпнивающей колонш, количество продуктов распада серпис1ых соединений и вновь образовавшегося сероводорода будет невелико. [c.363]

    При изучении химических факторов коррозии бетона следует рассматривать как химический и минералогический составы бетона, его капиллярно-пористую структуру, так и состав агрессивной среды, в которой, как это следует из опыта работы бетонных сооружений, большую роль играют ионы Mg2+, Ыа+, А1 +, ЫН4+, Си +, Ре +, Н+, 0Н , 504 , НСОз" и хлорсодержащие анионы. Также опасны все виды кислых газов — углекислый, сернокислый, сероводород. Определенную роль играют и органические соединения. [c.368]

    Под термином сероводородная коррозия подразумевав ется коррозия металлов и сплавов в агрессивных средах, содержащих растворенный сероводород или сульфиды металлов. Обычно сероводород содержится в сырье или образуется при его переработке, т.е. при добыче, трар портировке и переработке нефти и газа, а также в химической промышленности (при производстве азотной кисло- ты, сульфидов), при вулканизации каучука и других производствах. [c.47]

    Винипласт стоек 1) к большинству кислот различных кон-центрацнй — соляной, сернистой, муравьиной и жирньш кислотам любой кондептрацнн, серной до У0%, азотной до 98%, уксусной до 60%, фосфорной до 80%, плавиковой до 40% 2) растворам солей любой концентрации, едким щелочам концентрации до 60%, газообразному аммиаку и сухому сероводороду 100%-ной концентрации и другим агрессивным средам. [c.39]

    Запатентован также способ защиты нефтепромыслового оборудования от коррозии в агрессивных средах, содержащих сероводород и диоксид углерода, с помощью водо- и маслодиспергируемого раствора политиоэфиров. Предпочтительны политиоэфиры с концевыми гидроксильными группами. [c.334]

    Использование кислых технологических сред, а также применение кислот для различного рода технологических операций приводят к интенсивной коррозии металлического оборудования, трубопроводов, емкостей, машин, агрегатов, арматуры и т. п. Так, например, интенсивной коррозии подвергается оборудование нефтеперерабатывающих заводов, где в ходе технологического процесса переработки нефти образуются соляная, сероводородная, уксусная, нафтерювая кислоты. В нефтегазодобывающей промышленности коррозии подвержены оборудование скважин, насосно-компрессорные трубы, установки сбора и перегонки нефти и газа из-за наличия сопутствующих кислых газов сероводорода, углекислоты. В химической промышленности коррозионному разрушению подвергаются емкости для хранения кислот, реакторы, перекачивающие насосы (например, крыльчатки насосов, перекачивающих катализат в производстве уксусного альдегида, выходят из строя через 2—3 сут). Химическая обработка металлоизделий, проката, труб, проволоки в кислотах и кислых средах вызывает интенсивное растворение металла и значительные безвозвратные потери его. Считают, что при травлении окалины с поверхности стальных горячекатанных полос в кислотах теряется от 2 до 4 % протравливаемой стали, что при годовом производстве в 150 млн. т составляет 3—6 млн. т металла. Еще более опасны сопутствующие равномерной коррозии процессы локальной коррозии, наводороживания, коррозионного растрескивания, усталостного разрушения сталей. Так, по данным обследования химических заводов Японии, в 1979 г. более 50 % оборудования, разрушенного под воздействием кислых агрессивными сред, приходилось на локальную коррозию, коррозионное растрескивание, коррозионную усталость и лишь 33 % — на общую коррозию. [c.6]

    Бетонные соединения, находящиеся в чистом и влажном воздухе, не подвергаются коррозии. Однако наличие в воздухе некоторых газов (сероводорода, оксидов азота, хлороводорода, фтороводорода и т. п.) может привести к разрущению бетона. Воздействие на бетон агрессивных сред можно определять по специальной щкале (табл. 1.4.43). [c.105]

    Некоторые соединения свинца защиш ают металл от коррозии не в условиях агрессивных сред, а просто на воздухе. Эти соединения вводят в состав лакокрасочных покрытий. Свинцовые белила — это затертая на олифе основная углекислая соль свинца 2РЬСОз РЬ(ОН)г. Хорошая кроюш ая способность, прочность и долговечность образуемой пленки, устойчивость к действию воздуха и света — вот главные достоинства свинцовых белил. Но есть и антидостоинства высокая чувствительность к сероводороду, и главное — токсичность. Именно из-за нее свинцовые белила применяют сейчас только для наружной окраски судов и металлоконструкций, [c.263]

    Кроме того, в процессе эксплуатации внутренняя поверхность указанных труб быстро покрывается тонкой и плотной пленкой кокса, которая предохраняет металл труб от коррозии, изолируя его от агрессивной среды. До температуры 310° С сероводород из туймазинской и ромашкинской нефтей практически не выделяется. [c.49]

    Факторами агрессивности среды в газовой промышленности являются паршальное давление сероводорода и углекислого газа, количественное отношение углеводородного конденсата к водному в жидкой фазе потока, температура и скорость движения газожи,дкостного потока и др. [c.6]

    Интересные данные о коррозионной активности сред в нефтяных скважинах собрала Аракелова [185]. По ее данным (табл. 9,3) большинство старых скважин сильно обводнено и содержит относительно большую концентрацию сероводорода в воде. Такая агрессивная среда естественно должна вызывать сильную коррозию оборудования, что и наблюдается на практике. [c.288]

    Опасность охрупчивания стали нри катодной защите различных стальных сооружений (мостов, портовых сооружений, кораблей, трубопроводов, оборудования химических и нефтеперерабатывающих заводов), работающих в агрессивной среде, особенно среде, содержащей сероводород и сульфиды, кислоты, необходимо всегда иметь в виду и принимать соответствующие меры к его предотвращению. Ущерб, наносимый па-водороживанием при катодной защите, может конкурировать с ущербом, причиненным коррозией. Например, группа судов американского флота типа Liberty , находившаяся в бухте на консервации под катодной защитой, оказалась непригодной к дальнейшему использованию вследствие наводороживания подводной части корпусов. [c.137]

    Более 50 % коррозионных повреждений техники, эксплуатирующейся в природрш1Х условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит из-за появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение защитных пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррози)й(. также способствует неравномерность распределения ко лоний микроорганизмов, образование сероводорода, сульг фидов, ионов гидроксония, гидрат-ионов и т. п. в условиях, казалось бы, исключающих появление этих соединений. [c.316]

    Химическая коррозия вызывается непосредственным действием на металл агрессивной среды. В нефтеперерабатывающей промышленности, например, специфическими коррозионными агентами являются содержащиеся в сырой нефти хлориды натрия, калия и магния, которые в процессе первичной перегонки, гидролизируясь, выделяют соляную кислоту, вызывающую сильную хлористоводородную коррозию. При температурах выше 350 °С сероводород, содержащийся в нефтях и дистиллятах, яеносредствеп-йо химически реагирует с железом, образуя сернистое железо. [c.152]


Смотреть страницы где упоминается термин Сероводород как агрессивная сред: [c.236]    [c.186]    [c.162]    [c.49]    [c.320]    [c.343]    [c.186]    [c.141]    [c.154]    [c.30]   
Оборудование нефтеперерабатывающих заводов и его эксплуатация (1966) -- [ c.19 , c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды



© 2025 chem21.info Реклама на сайте