Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты при конвекции вынужденной

    В данной главе уравнения для коэффициентов теплоотдачи приведены в следующем порядке 1) безразмерные по типу уравнений Кольборна 2) безразмерные по типу уравнений Нуссельта и 3) размерные уравнения различных типов. Принята такая последовательность изложения свободная конвекция вынужденная конвекция при отсутствии фазовых превращений — а) ламинарное течение, б) переходный режим. [c.200]


    При этом, если конвекция вынужденная, то коэффициент теплоотдачи а зависит от режима движения жидкости, характеризуемого величиной Ке. При свободной же конвекции, кипении жидкостей и конденсации паров а зависит от температуры стенки, через которую происходит передача тепла. Для всех перечисленных случаев получены многочисленные формулы, позволяющие вычислить а. Пользование формулами для вынужденной конвекции не представляе Е труда. [c.326]

    Коэффициент теплоотдачи вынужденной конвекции определяется по формуле [c.109]

    При вынужденном движении теплоносителя коэффициент теплоотдачи от поверхности теплообмена к жидкости, которая течет с заданной скоростью, определяется критериями Рейнольдса и Прандтля. Критерий Грасгофа может быть введен только в случаях, когда на теплообмен заметное влияние оказывает естественная конвекция. [c.42]

    Поскольку коэффициенты молекулярного переноса тепла и массы (теплопроводности и диффузии) в однородных системах от электрических, магнитных и других воздействий непосредственно не зависят, методы интенсификации тепломассообмена ориентированы в основном на изменение гидродинамической обстановки на границе фаз, т. е. на вынужденную конвекцию. [c.145]

    Отметим, что противопоставление коэффициентов теплоотдачи при вынужденной конвекции в потоке жидкости и при кипении не означает, что в последнем случае перенос тепла отличается по механизму от переноса конвекцией. Дело в том, что изменяется структура конвективных токов вблизи поверхности теплообмена, хотя конвективная природа переноса сохраняется. Образующийся при этом пристенный слон жидкости пронизан конвективными тока- > ми, формирующимися вследствие образования, роста и отрыва паровых пузырьков. В этом смысле и используется термин теплоотдачи при кипении. [c.243]

    Коэффициент теплоотдачи а зависит от режима движения среды, ее скорости, температуры и теплофизических свойств, формы и размеров элементов поверхности теплообмена. Если температуры среды и стенки, а также коэффициент теплоотдачи изменяются вдоль поверхности, то используют дифференциальную форму записи закона Ньютона в виде уравнения (IX,3), в котором коэффициент а носит локальный характер. Поскольку вынужденная и свободная конвекции всегда сопутствуют друг другу, коэффициент теплоотдачи а отражает влияние на передачу тепла конвекцией обоих этих факторов. С увеличением скорости среды и уменьшением разности температур отдельных участков среды роль вынужденной конвекции в теплопереносе возрастает. При прочих равных условиях увеличение разности температур стенки и среды позволяет передать большее количество тепла. [c.162]


    Критериальные уравнения при теплопередаче конвекцией. Для определения величины коэффициента теплоотдачи при свободной или вынужденной конвекции пользуются критериями подобия, которые позволяют представить расчетные уравнения в компактной и достаточно общей форме. Коэффициент теплоотдачи обычно входит в критерий Нуссельта [c.162]

    Соотношение (4) позволяет использовать уравнения, описывающие теплообмен при вынужденной конвекции, также и для случая естественной или смешанной конвекции, по крайней мере для нахождения хорошего первого приближения. Уравнение (4) показывает, что относительное направление вынужденной и естественной конвекций (одинаковое или противоположное направление скоростей) не влияет на общий коэффициент теплоотдачи. Этот вывод согласуется с экспериментальными данными, за исключением узкой области неустойчивости в случае противоположного направления скоростей, в которой Ке(ог и Ог одного порядка величины. [c.93]

    Активные методы. Механический метод интенсификации теплообмена путем удаления прогретых слоев жидкости с поверхности может увеличить теплоотдачу при вынужденной конвекции. К сожалению, необходимые для этого способа приспособления не особенно совместимы с большинством теплообменников. Недавно выпущена работа [47], в которой описана интенсификация теплообмена при течении воздуха с помощью такого метода для ламинарного режима течения вдоль плоской пластины получено десятикратное увеличение коэффициентов теплоотдачи. [c.326]

    Отдельные пассивные и активные методы усиления эффективны для конденсации в объеме пара и при вынужденной конвекции [1—5]. Некоторые системы, успешно испытанные в лаборатории, нашли применение в промышленных конденсаторах. Наибольший интерес вызывает конденсация органических жидкостей, теплофизические свойства которых обеспечивают относительно низкие коэффициенты теплоотдачи при конденсации, [c.360]

    Так как Ог 0,3Не , величиной свободной конвекции пренебрегать нельзя, поэтому определяем коэффициенты теплоотдачи как при вынужденной, так и при свободной конвекции и выбираем из них наибольшее значение. [c.155]

    КОЭФФИЦИЕНТЫ ТЕПЛООТДАЧИ ДЛЯ ПУЗЫРЧАТОГО КИПЕНИЯ С ВЫНУЖДЕННОЙ КОНВЕКЦИЕЙ [c.95]

    Так как Не > 10 то коэффициент теплоотдачи от воздуха к стенке за счет вынужденной конвекции находим по формуле (509) [c.289]

    Если естественная конвекция есть результат различия плотностей жидкости в различных местах ее объема, то вынужденная конвекция — работа подведенной извне электрической или механической энергии (электромагнитное перемешивание и барботаж жидкости путем -пропускания через нее газовой фазы). Возникающее при этом в объеме жидкости скорости приводят к выравниванию состава и температуры по объему. Даже при небольших затратах энергии, подведенной извне, перенос тепла в жидкости настолько интенсивен, что жидкое тело становится тонким телом. Газовая фаза может возникнуть и в самой жидкости, как это имеет место в сталеплавильной ванне. В данных случаях происходит интенсивный перенос тепла в условиях, когда практически отсутствует температурный градиент. Говорить здесь об условн 1х коэффициентах теплопроводности и передачи тепл-а конвекцией /неосновательно, поскольку эти понятия теряют реальный смысл в отсутствие градиента температур. [c.37]

    После подстановки значений в уравнение (88) коэффициент теплоотдачи при вынужденной конвекции ак может быть представлен в виде зависимости от физического рю и геометрического Хо параметров и некоторого комплекса А], составленного из величин, характеризующих физические свойства среды  [c.85]

    Жидкие среды с низкой теплопроводностью имеют последнюю на 1—2 порядка, ниже, чем металлы, но их плотность на 3—4 порядка выше, чем плотность газообразных теплоносителей. Для солей и шлаков параметр Л1 столь низок, что высокое значение коэффициента теплоотдачи конвекцией можно обеспечить только за счет увеличения удельной мощности потока теплоносителя, т. е. его скорости при вынужденной конвекции или температурного напора при естественной. При естественной конвекции, кроме достаточного температурного напора, необходимо иметь высокое значение характерного геометрического параметра Хо, поскольку при низких значениях Хо уменьшается пг и высокая плотность теплоносителя и температурный напор оказывают меньшее влияние на теплообмен конвекцией. Практически это означает, что поверхность нагрева необходимо располагать вертикально. [c.88]

    Коэффициент теплоотдачи вынужденной конвекцией от движущейся полосы к печной атмосфере, Вт/(м -К) конв 7,0 Табл. 8.2, п. 16 [c.104]

    Рис. 4.27 дает представление о характере изменения коэффициента извлечения /Си с ростом давления в напорном канале, при этом имеется возможность сравнить процессы при одностороннем и двустороннем проницании, при вынужденном и смешанноконвективном движении газа с моделью идеального вытеснения (кривая 1). Видно, что внешнедиффузионное сопротивление резко снижает массообменную эффективность мембранного разделения, причем наблюдается максимум зависимости К = Р ). Положение максимума смещается в сторону больших давлений при интенсификации процесса массообмена в результате свободной конвекции, а также при двустороннем расположении мембраны в канале. С ростом коэффициента деления 0 смещение максимума зависимости Ka f Pf) имеет более сложный характер при увеличении 0 от О до 0,5 оптимум смещается в сторону более низких давлений — это область нарастания внешнедиффузионных сопротивлений (см. рис. 4.26). Далее, с ростом 0, оптимальное значение давления Р смещается в сторону больших значений — здесь влияние массообмена в газовой фазе падает вследствие истощения смеси. В гл. 7 дан анализ влияния массообменных процессов в каналах на энергетику мембранного разделения газов, который, позволит дать рекомендации по выбору оптимального давления в аппаратах. [c.156]


    При увеличении массовой доли пара в потоке, движущемся в обогреваемом канале, могут быть достигнуты условия, когда пузырьковое кипение будет оказывать все меньщее влияние на коэффициент теплоотдачи по сравнению с влиянием конвекции в двухфазном потоке. При этом меняется механизм парообразования в потоке, а следовательно, и механизм теплопередачи. Если на участке кипения пар образовывался в виде пузырьков, то на участке конвективной теплоотдачи двухфазного потока происходит преимущественное испарение жидкости с имеющейся в потоке границы раздела фаз. Визуальные и кинематографические исследования позволили установить наличие участка, на котором пузырьковое кипение подавляется и может быть подавлено полностью. Этот режим теплоотдачи иногда называют испарением при вынужденной конвекции [105]. Важно подчеркнуть, что теплоотдача на этом участке полностью определяется конвективными токами, формирующимися при движении двухфазного потока. [c.244]

    Это уравнение вместе с уравнення н баланса энергии (2) и (3) составляет исходную систему уравнений для расчета изменения температур и Т - Подобный расчет демонстрируется ниже на конкретном примере. На рис. 4 изображено двухтрубное устройство для охлаждения воды с находящимся во внутренней трубе испаряющимся фреоном. В режиме кипения при вынужденной конвекции индивидуальный коэффициент теплоотдачи растет с ростом паросо-держання х. В качестве грубого приближения можно принять линейную связь между <х., и л. Уравнение баланса энергии имеет вид [c.78]

    А. Тепло- и массопереиос к твердым телам и жидким средам прн внешнем обтекании тел и течении в каналах, при вынужденной и естественной конвекции. Перенос теплоты к твердым телам и жидким средам при ламинарном течении с заданными граничными условиями или условиями сопряжения полностью описывается законом теплопроводности Фурье, если только тепловые потоки не превышают своих физических пределов (фононный, молекулярный, электронный перенос н т. д.). Возможность решения сложных задач в большей или меньшей степени зависит только от наличия необходимой вычислительной техники. Для расчета ламинарных течений, включая и снарядный режим, к настоящему времени разработано достаточно много стандартных про1-рамм, и их число продолжает непрерывно увеличиваться. Случай движущихся тел включает в себя также и покоящиеся тела, так как координатную систему можно связать с телом и, таким образом, исключить относительное движение. Поэтому методы расчета теплопередачи к твердым телам и жидким средам при их ламинарном течении полностью аналогичны. Единственным фактором, влияющим на тепловой поток как при нестационарном нагреве твердого тела, так и при квазистационар-ном ламинарном течении, является время контакта. Хотя часто коэффициент теплоотдачи нри ламинарном течении представляется как функция скорости, необходимо обязательно помнить, что скорость течения есть только мера времени контакта или времени пребывания среды в теплообменнике. Эта концепция обсуждалась в 2.1.4, где было показано, каким образом и — а-метод, используемый обычно для описания ламинарного теплообмена, можно применить и для расчета нестационарного теплопереноса а твердом теле. В разд. 2.4 эта концепция получает даль- [c.92]

    Вибрацию поверхностен ншроко и )учали в лабораторных условиях. Преобладали исследования горизонтальных цилиндров, которые вибрировали как в гори.чон-тальном, так и в нертикальном напранлениях. Коэффициенты теплоотдачи можно увеличить при этом в 10 раз для колебаний как с низкой частотой (высокой амплитудой), так и с высокой частотой (низкой амплитудой). Хотя улучшение теплоотдачи может быть очень значительным, необходимо признать, что естественная конвекция является малоэффективным видом теплообмена. Так как при максимальной интенсификации средняя скорость поверхности по всему цилиндру меньше I м/с, более практично организовать стационарное вынужденное течение. Конструкторы обеспокоены также тем, что такие интенсивные вибрации могут привести к разрушению оборудования. [c.323]

    В последнее время большое внимание уделяют вопросам применения о.хлаждения коронным разрядом к практическим задачам. В [14] предложено охлаждение режущих инструментов с помощью точечных электродов в [15] используются параллелыгые проволочные электроды для улучшения отвода теплоты от стандартных горизонтальных оребренных труб. При достаточной электрической мощности коэффициенты теплоотдачи можно увеличит], на несколько сот процентов. Однако оказывается, что эквивалентный эффект можно получить при более низких затратах и без опасности попасть под напряжение 10 ООО— 100 ООО В просто путем организации вынужденной конвекции с помощью нагнетателя или вентилятора. [c.323]

    Область вынужденной двухфазной конвекции. Область вынужденной двухфазной конвекцин более всего ассоциируется с кольцевым )ежимом течения. Теплота передается теплопроводностью пли конвекцией через жидкую пленку и пар генерируется непрерывно на границе раздела жидкая пленка — паровое ядро. В этой области возможны очень высокие коэффициенты теплоотдачи значения могут быть настолько высокими, что становится затруднительным их точное определение. В случае ноды получены коэффициенты теплоотдачи до 200 кВт/(м -°С). [c.385]

    Основываясь на результатах ограниченных промышленных испытаний, автор [16] предложил считать максимальный коэффициент теплоотдачи при кипении па трубном пучке равным 1700 Вт/(м--К) для органических жидкостей и 5700 Вт/(м -К) для воды. Считается также, что максимальная тепловая нагрузка в пучке не должна превышать 38 000 Вт/м для установок, работающих па органических жидкостях при естественной циркуляции, и 63 000 Вт/м-—при вынужденной конвекции. Максимальный допустимый тепловой ноток при испарешш воды или водного раствора в пучке в любых условиях циркуляции должен составлять 95 ООО Вт/м . Эти очень об дие рекомендации делают результаты расчетов крайне консервативными, за исключением условий в вакууме или при давлениях, близких к критическому. В общем для расчетов предпочтительны методы, которые будут указаны н иже. [c.408]

    Публикации по парообразованию при вынужденной конвекции смесей крайне ограничены. Одно из самых ранних исследований (I] проведено в 1940 г. с использованием четырехходового испарителя с горизонтальными трубами, нагреваемыми паром. Каждый ход имел три отдельные паровые рубашки для измерения локального теплового потока. Жидкостью была смесь бензол — масло. Установлено, что температура объема жидкости увеличивается по длине кипения насыщенной жидкости, когда она обогащается маслом. Таким образом, часть теплоты, передаваемой смеси, сохраняется в форме скрытой теплоты для поддержания жидкости в условиях насыщения и не идет на парообразование. Средние коэффициенты теплоотдачи рассчитаны для каждого хода, где происходило кипение, во всех трех рубашках. Для данного массового паросодерисания коэффициент теплоотдачи уменьшался с увеличением содержания масла в подаваемой жидкости. [c.419]

    Однако практически зависимость толщины пограничного слоя от. ряда параметров заставляет пользоваться уравнением (12), где а=а — коэффициенту теплоотдачи конвекцией. В отличие от других коэффициентов, применяемых в теории теплопередачи, коэффициент к есть величина, зависящая от многих факторов и определяемая исключительно опытным путем. Так как теплоотдача конвекцией органически связана с гидродинамическими условиями в потоке и свойствами среды, составляющей поток, то наиболее общим выражением, позволяющим находить коэффициент теплоотдачи конвекцией при вынужденном движении, является взаимосвязь между числами Нуссельта (Ыи=акХа1Х), Рейнольдса [Re — wxa ) и Пранд-тля (Яа = г1(с/Я ), представленная уравнением [c.85]


Смотреть страницы где упоминается термин Коэффициенты при конвекции вынужденной: [c.128]    [c.42]    [c.134]    [c.159]    [c.159]    [c.199]    [c.240]    [c.246]    [c.97]    [c.236]    [c.312]    [c.314]    [c.316]    [c.380]    [c.380]    [c.411]    [c.139]    [c.95]    [c.273]    [c.87]   
Явления переноса (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Конвекция



© 2025 chem21.info Реклама на сайте