Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионный поток па границе раздела фаз

    Рассмотренные условия образования вихрей на границе раздела потоков фаз проявляются одновременно в сложном взаимодействии. Исключительное влияние может оказать гидродинамическая обстановка процесса, создаваемая в том или ином диффузионном аппарате, и режим движения потоков, как это уже отмечалось выше. [c.148]

    Рассматривая совместно уравнения диффузии для газовых и жидкостных систем и материального баланса, можно получить математическое описание массопередачи в многокомпонентных двухфазных системах. При этом следует учитывать состояние поверхности раздела фаз, определяемое гидродинамическими условиями взаимодействия потоков и их физическими свойствами. Если предположить, что на поверхности раздела фаз существуют ламинарные пленки, а в ядре потоков — развитый турбулентный режим, то основное сопротивление массопередаче будут оказывать диффузионные сопротивления жидкой и газовой пленок, находящихся на границе раздела фаз. В пределах каждой из этих пленок для описания диффузионного переноса вещества могут быть использованы уравнения (П1, 87), (П1, 94), определяющие диффузионный транспорт компонентов для каждой из фаз. [c.215]


    Таким образом, поток разбивается на две области область, непосредственно прилегающую к поверхности раздела толщиной 0(,л (диффузионный слой), в которой коэффициент турбулентной диффузии меньше коэффициента молекулярной диффузии и область, представляющую остальную часть потока, в которой коэффициент турбулентной диффузии больше коэффициента молекулярной диффузии. В первой области турбулентной диффузией по сравнению с молекулярной пренебрегают п рассматривают поток вещества, проходящий через нее, как чисто молекулярный. Это положение оказывается справедливым при наличии твердой фиксированной границы раздела. [c.240]

    В качестве потоков принято 1г = — поток вязких напряжений в сплошной фазе (тензор) /xl=f, 2, — поток силы механического взаимодействия между фазами (вектор) /х2 = дТ — поток тепла внутри несущей фазы (вектор) /хз = д2 — поток тепла внутри дисперсной фазы (вектор) /х, +3 = ] — диффузионный поток А-го комнонента в фазе 1 (вектор) /х, я+ +з = ]2 — диффузионный поток А-го компонента в фазе 2 (вектор) — интенсивность теплообмена (контактного) между фазами (скаляр) 7у,г+1 = 1 , — скорость г-й химической реакции в фазе 1 (скаляр) /у, лг+г+1 =/<2г) — скорость г-й химической реакции в фазе 2 (скаляр) 1у,21 +кА = 1к(т — поток А-го компонента через границу раздела фаз в направлении 1 -> 2 (скаляр) /к, 2Л +я+й+1 = / (21) — поток к-то компонента через границу раздела фаз в направлении 2- 1 (скаляр). [c.58]

    При эмульсионной полимеризации процесс может протекать либо в объеме одной фазы (полимер-мономерная частица), либо на границе раздела фаз сплошная фаза—полимер-мономерная частица. Могут возникать и промежуточные случаи, когда зона реакции занимает часть объема реакционной фазы (от узкой пограничной области до всего объема). Область протекания реакции зависит как от адсорбционной способности поверхностного слоя, так и от соотношения величин диффузионных потоков мономера и скорости химической реакции. [c.153]

    Идентификацию предложенной математической модели промывки выполним, исходя из принципа раздельного (независимого) определения коэффициентов модели, путем сопоставления функции отклика системы на гидродинамическое возмущение с функцией, описывающей вымывание примеси из осадка. Коэффициент D и средняя действительная скорость потока жидкости v в объеме осадка определяется из сравнения решения уравнения (7.100) с кривой отклика системы на типовое возмущение по расходу жидкости, например на ступенчатое возмущение. Окончательное распределение свободного порового пространства осадка между фильтратом и жидкостью к моменту начала диффузионной стадии промывки определится по разности площадей под кривой отклика на возмущение по расходу жидкости и под кривой изменения концентрации примеси в промывной жидкости. Располагая информацией о дисперсии границы раздела двух жидкостей, характеризующейся эффективным коэффициентом D, о доле проточных пор осадка /о и характере кривой вымывания примеси из осадка, нетрудно рассчитать коэффициент переноса между проточными и тупиковыми порами осадка но методике обработки концентрационных кривых, рассмотренной выше (см. 7.2). [c.399]


    Теория диффузионного пограничного слоя. Эта теория в основном справедлива для случая твердой фиксированной границы раздела фаз. В основе теории лежит гипотеза о постепенном затухании турбулентного движения по мере приближения к твердой границе раздела со стороны жидкой или газовой фазы. Физическая схема турбулентного потока в соответствии с данной моделью показана на рис. 2.14 [141. Ядро потока (область I) характеризуется режимом развитой турбулентности и постоянной концентрацией растворенного вещества. В области II, расположенной [c.153]

    Отражение условий динамического равновесия на границе раздела фаз в данном случае сводится к учету равновесного распределения вещества между фазами с матрицей коэффициентов распределения М и равенству диффузионных потоков по каждому компоненту на границе раздела со стороны каждой из фаз. Как уже упоминалось (см. с. 152), топологически эти условия реализуются в виде комбинации Т-элемента и TD-элемента с матрицей коэффициентов передачи 1V1. Физическая схема ячейки и локальная форма связной диаграммы физико-химических процессов в ней показаны на рис. 2.20. Та же связная диаграмма, но в форме диаграммной сети, представлена на рис. 2.21. [c.164]

    Диффузионная зона (со стороны жидкой фазы). В этой зоне процесс хемосорбции сводится к физической абсорбции поглощаемого компонента А. Диаграмма связи здесь существенно упрощается и сводится к отражению межфазного переходного потока совместно с условиями равновесия на границе раздела фаз (см. с. 152). [c.167]

    К. Онд раздельно исследовал диффузионную и термическую составляющие в опытах с уравновешенными независимыми потоками пара и жидкости. Им было установлено, что для расчета коэффициентов массоотдачи Рл- и р можно использовать корреляции, полученные для физическои абсорбции, тогда как в реальном процессе на и р у сильное влияние оказывают процессы испарения и конденсации, искажая истинную картину процесса у границы раздела фаз. [c.139]

    О. Минимальный тепловой поток. Дополнительное диффузионное сопротивление в жидкой фазе вследствие переноса массы более летучего компонента в паровую пленку у поверхности нагрева приводит к тому, что температура на границе раздела (Г,) выше, чем в остальной части жидкости (Т оо). Поэтому значительная часть обш,его теплового потока, проходящего через паровую пленку, передается с границы раздела в объем жидкости, а не идет на непосредственное образование пара. Как следствие паровая пленка становится тоньше. В [18], где исследовалось пленочное кипение смесей вода — 2-бу-танол на тонкой проволоке, отмечено, что прямому образованию пара на поверхности нагрева соответствует только 53% подведенного теплового потока по сравнению с 95% в случае чистых жидкостей. Остальная часть теплового потока передается конвекцией в жидкой фазе и затем в паровые пузыри. Таким образом, можно ожидать, что минимальный тепловой поток для бинарной смеси будет больше, чем в эквивалентной чистой жидкости. [c.418]

    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]


    Скорость таких реакций в отличие от гомогенных зависит как от химических, так и от физических факторов. К первым относится темп взаимодействия на границе фаз, ко вторым — величина поверхности раздела фаз и быстрота переноса вещества из объема к поверхности раздела фаз и от нее в объем. Процесс можно расчленить на три последовательные стадии — диффузия реагента (реагентов) к зоне взаимодействия, химическая реакция, удаление продукта (продуктов ) процесса. Диффузионный поток будет тем интенсивнее, чем больше окажется разность между концентрацией реагентов в данной точке Со и в зоне взаимодействия а также коэффициент диффузии О и чем меньше толщина слоя б, через который совершается массопере-дача. Если за рассматриваемый промежуток времени расходуется столько данного вещества (веществ), сколько доставляется его к поверхности раздела фаз (стационарный режим), то [c.153]

    Здесь гю—средняя скорость потока То—касательное напряжение на границе раздела фаз, а безразмерная величина 51 =р/т называется диффузионным критерием Стантона. Критерий 51, пользуясь уравнениями (П-44), (П-47) и (П-49), можно выразить через критерии Ни, Не и Рг  [c.113]

    Учитывая это, удобно ввести для расчета процессов переноса в-ва в пределах данной фазы от границы раздела в глубь потока (в ядро потока) или из ядра потока к межфазной пов-сти коэф. массоотдачи р в виде отношения плотности диффузионного потока к характеристич. разности концентраций. Тогда [c.655]

    Движение границы раздела жидких фаз обычно вызывает деформации растяжения и сжатия. Например, при перемещении пузырька или капли одна половина поверхности сокращается, другая — растягивается. Возникающие новые участки поверхности заполняются адсорбированным веществом, при сокращении поверхности вещество десорбируется. Непрерывно протекающие процессы адсорбции — десорбции поддерживаются диффузионными потоками из объема к расширившимся [c.127]

    Последний вид граничного условия (четвертого рода) встречается в задачах для двух смежных областей, в которых распределен целевой компонент. В этом случае условие состоит в равенстве значений концентрации (или задании их равновесного соотношения) и равенстве диффузионных потоков вещества на границе раздела фаз  [c.19]

    Гидродинамические особенности турбулентного потока в канале были рассмотрены в гл. 3. Здесь же следует отметить влияние гидродинамических условий на перенос вещества. В пограничном слое толщиной 8 (рис. 15-2) происходит резкое, близкое к линейному изменение концентраций поскольку в этой области потока скорость процесса определяется молекулярной диффузией, роль конвективной диффузии мала. Это объясняется тем, что на границе раздела фаз усиливается тормозящее действие сил трения между фазами и сил поверхностного натяжения на границе жидкой фазы. Образование гидродинамического пограничного слоя вблизи поверхности раздела фаз ведет к возникновению в нем диффузионного пограничного слоя толщиной 5д, обычно не совпадающей с 5 . В ядре потока массоперенос осуществляется в основном турбулентными пульсациями, поэтому концентрация распределяемого вещества в ядре потока практически постоянна. Как отмечалось выше, перенос вещества движущимися частицами, участвующими в турбулентных пульсациях, называют турбулентной диффузией. Перенос вещества турбулентной диффузией описывается уравнением, аналогичным уравнению (15.14а)  [c.16]

    В случае непосредственного контакта фаз (именно такие ситуации преобладают в массообменных процессах) перенос вещества осуществляется по схеме, изображенной на рис. 10.8 для фрагмента массообменного аппарата. В пределах каждой фазы у границы их раздела формируются диффузионные пограничные пленки, в которых происходит плавное изменение концентраций переносимого вещества — от значений в ядре фазы (потока) до значений на границе раздела. В модельном представлении пограничные пленки полагают (как и в случае теплопереноса) резко очерченными, а весь концентрационный напор — сосредоточенным в пределах этих пленок. [c.768]

    Во многих практически важных процессах абсорбции поглощение газа жидкостью сопровождается химическим взаимодействием фаз. При этом поглощаемый компонент, достигнув границы раздела фаз, вступает в химическую реакцию с абсорбентом или с его активной частью. В этом случае концентрация ПК в фазе х по нормали п от межфазной границы к ядру жидкостного потока будет уменьшаться более интенсивно, чем при физической абсорбции. На рис. 11.23, а представлены кривые распределения концентраций ПК в диффузионных пограничных пленках со стороны газа толщиной и со стороны жидкости (5д) — как для физической абсорбции (кривая 1 — штриховая линия), так и для хемосорбции (кривая 2 — сплошная). [c.945]

    В предыдущем разделе был рассмотрен метод гравитационной седиментации, который применяется для отделения от жидкости относительно больших частиц. Особенностью процесса является пренебрежимо малый диффузионный поток и наличие четкой границы между чистой жидкостью, суспензией и твердым осадком. [c.191]

    В момент осуществления контакта двух жидкостей, не находящихся в равновесии по распределяемому компоненту, скачок концентраций по обе стороны от границы раздела фаз, имеет определенное конечное значение, а толщина диффузионного слоя равна нулю. Это значит, что градиент концентраций, а следовательно, и поток диффундирующего через границу раздела фаз вещества могут стать как угодно большими. Действительно, поток вещества через межфазную границу двух полубесконечных фаз [47, 48] [c.394]

Рис. 5.2.З.1. Стационарный диффузионный поток] компонента поперек неподвижной пленки вещества около границы раздела фаз Рис. 5.2.З.1. <a href="/info/332995">Стационарный диффузионный поток</a>] компонента поперек <a href="/info/40130">неподвижной пленки</a> вещества около границы раздела фаз
    Так как перенос мономера через границы раздела фаз и химическая реакция его превращения в полимер представляют собой последовательные ступени одного и того же процесса эмульсионной полимеризации, то в стационарном состоянии скорости всех этих трех стадий должны быть равны между собой. Приравнивая значения диффузионных потоков, определяемых формулами (2.38), к значениям скорости реакции полимеризации из соотношения (2.1), получим систему двух алгебраических уравнений для определения онцентраций мономера в водной фазе и латексных частицах  [c.71]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    В основу формулы (3.31) положена теория быстрой коагуляции Смолуховского [31 ] с постановкой краевой задачи для полу-бесконечной среды. В данном случае подмена чисто диффузионного механизма механизмом коагуляции, но-видимому, не совсем корректна. Подход с позиций диффузионного механизма требует постановки краевой задачи на конечном промежутке и учета сохранения массы или равенства диффузионных потоков на границе раздела фаз сплопшая фаза—полимер-мономерная частица. [c.147]

    Граничные условия (3.65)—(3.68) определяют концентрацию радикалов с в- в водной фазе, концентрацию радикалов в центре частицы с в-, концентрации мономера в центре частицы и на границе раздела фаз капля мономера—водная фаза. Условия сопряжения (3.67) на границе раздела фаз водная фаза—частица дают связь концентраций радикалов в водной фазе и в частице через коэффициент распределения и для концентрации мономера через коэффициент распределения р. Уравнения (3.68) являются условиями равенства диффузионных потоков на границе раздела фаз водная фаза—полимер-мономерная частица. Приведем обозначения задачи (3.47)—(3.68), которые не указывались выше С/ — концентрация инициатора тпр- — число растущих макрорадикалов в 1 см эмульсии Шр — число нерастущих макрорадикалов в 1 см эмульсии — вес капли с — концентрация мицелл М — молекулярный вес мономера р — плотность мономера р — плотность полимера Рз — площадь поверхности, занимаемая одним киломолем эмульгатора на поверхности адсорбированных слоев — степень агрегации мицелл — константа скорости распада инициатора k — константа скорости инициирования /Ср — константа скорости роста цепи k — константа скорости обрыва цепи / — эффективность инициирования — среднее значение концентрации мономера внутри частиц. [c.156]

    Скорость химической реакции значительно выше скорости переноса массы. По мере того, как скорость реакции умен1,шается при сопоставлении с мгновенно протекающими превращениями, поверхность раздела фаз, богатых компонентами А и В, превращается в диффузионную зону, ширина которой, тем не менее, не выходит за пределы ламинарного слоя на границе раздела фаз. Оба реагента диффундируют в указанную зону, но ни один из них не проходит зону, не превратившись в продукт реакции. Таким образом, в ядре потоков газовой и жидкой фаз отсутствует непревращенный реагент, поступивший из другой фазы (рис. ХП1-3, а). [c.375]

    Согласно этой теории (рис. 11-10), распределяемое вещество переносится из ядра потока жидкости к границе раздела фаз непосредственно потоками 5КИДК0СТИ и молекулярной диффузией. При этом воспринимаю-щая распределяемое вещество фаза счиаается либо твердой, либо близкой к ней (по способности гасить турбулентные пульсации потока). В рассматриваемой системе поток можно считать состоящим из двух частей ядра и граничного диффузионного слоя. [c.267]

    Диффузионный перенос вещества в пределах одной фазы от основной массы (ядра потока) к границе раздела фаз или от последней к основной массе фазы принято называть массоот-дачей. [c.300]

    На границе ядра потока с пограничным слоем Со onst. Подобие переноса вещества у границы раздела фаз установим на основе представления о диффузионном пограничном подслое. [c.401]

    Принцип аддитивности фазовых сопротивлений нельзя надежно использовать до гех пор, пока надлежащим образом не определены все сопротивления. Если на границе раздела фаз имеется ПАВ, то необходимо учитывать диффузионное сопротивление пов-сти раздела. Кроме того, наличие ПАВ меняет гидродинамич. структуру потока вблизи границы раздела, что отражается на величине или Р ,, либо обоих коэф. одновременно. Даже когда пов-сть чистая, под воздействием массопередачи может возникнуть поверхностная конвекция, к-рая значительно повышает преим. р , но может отразиться и на Р ,. Конвективные потоки на пов-сти в виде регулярных структур появляются вследствие возникновения локальных градиентов поверхностного натяжения (эффект Марангоии), из-за естеств. конвекции вследствие разности в плотностях у границы раздела и в ядре фазы н по ряду др. причин. [c.657]

    Согласно схеме (рий. 10-1, а), протекает многокомпонентная диффузия через границу раздела фаз, причем потоки компонентов в стационарных условиях связаны стехиометрическими коэффициентами реакции. Растворение экстрагента в водной фазе можно рассматривать как массопередачу, сопровождаемую химической реакцией с извлекаемым компонентом. Еслп реакция взаимодействия с экстрагентом протекает быстро, то экстрагируемое вещество образуется в глубине диффузионного слоя водной фазы, что повышает коэффициент массоотдачи его к границе раздела фаз. Тогда при переходе от кинетического режима в диффузионному нельзя использовать одинаковые значения коэффициентов массопередачи. В кинетическом режиме химическая реакция и массопередача могут рас-слштриваться как последовательно протекающие процессы. При этом можно считать, что реакция протекает как бы в проточном реакторе идеального перемешивания, в который за счет диффузии вводится экстрагент и из которого выводится конечный продукт реакции. Этот реактор идеален также потому, что из него не удаляются промежуточные продукты (если такие существуют). Они образуются и исчезают только за счет реакций. [c.383]

    Характер влияния на Я коэффициентов диффузии в подвижной и стационарной фазах следует из ранее приведенных уравнений для Яг и Яз. Среди параметров, характеризующих технику эксперимента при хроматографическом разделении веществ, главным является размер и форма частиц насадок. Диаметр частиц или толщина пленки неподвижной фазы определяют длину диффузионного пробега вещества к границе раздела фаз. Очевидно, что чем меньше размеры частиц, тем меньше диффз ионные ограничения, но всегда существует нижняя граница размеров частиц, определяемая проницаемостью слоя насадки в хроматографической колонке для подвижной фазы. В свою очередь проницаемость колонки для одной и той же подвижной фазы зависит не только от диаметра частиц, но и от высоты колонки. Получается замкнутый круг. Чем меньше К , тем больше требуется 7У,фф. Для получения необходимого числа Л/эфф следует или уменьшить Н до соответствующего значения при сохранении длины колонки, или увеличить ее длину при сохранении Я. Оба требования выполнимы только до определенных пределов, ниже которых колонки оказываются непроницаемыми для подвижной фазы при допустимом давлении. Одновременным решением проблем снижения диффузионных ограничений со стороны стационарной фазы и обеспечения необходимой проницаемости колонок для подвижных фаз, явилось создание пленочных и поверхностно-пористых сорбентов, позволяющих без существенного уменьшения размеров частиц и соответственно без принципиального увеличения сопротивления колонки потоку подвижной фазы в произ- [c.185]

    Во всех перечисленных процессах общим является перенос вещества через границу раздела фаз. Такой процесс называют также массопередачей. Поскольку в процессах переноса массы всегда присутствует процесс диффузионного переноса, такие процессы часто называют диффузионными. Перенос компонента от границы раздела фаз в основную массу газового или жидкого потока вещества-носителя называют массоотдачей. Понятия массопереноса, массопередачи и массоотдачи во многом аналогичны понятиям переноса теплоты, теплопередачи и теплоотдачи. [c.265]


Смотреть страницы где упоминается термин Диффузионный поток па границе раздела фаз: [c.37]    [c.149]    [c.384]    [c.179]    [c.266]    [c.75]    [c.216]    [c.216]    [c.186]    [c.876]    [c.172]    [c.7]   
Газожидкостные хемосорбционные процессы Кинетика и моделирование (1989) -- [ c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Границы раздела фаз

Диффузионный поток



© 2024 chem21.info Реклама на сайте