Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

эффектов эквивалентный вес, определение

    С ростом напряженности электрического поля Р подвижность ионов возрастает и при определенном значении может достичь такой величины, когда за удвоенное вре-мп релаксации ион будет успевать выходить за пределы ионной атмосферы. При таких условиях ионные атмосферы не образовываются, поэтому вызываемые ими тормозящие эффекты не возникают, т. е. Я] = О и Яц = 0. Измеренная величина эквивалентной электропроводности электролита в этом случае составляет (эффект Вина). [c.41]


    Все химические реакции сопровождаются поглощением или выделением энергии. Эта энергия может быть тепловой, электрической, фотохимической, световой и др. Поскольку между разными видами энергии существует определенная эквивалентность, то для количественного сравнения энергетических эффектов химических реакций их пересчитывают на тепловые единицы джоули или калории). В зависимости от поглощения или выделения энергии реакции делят на экзотермические и эндотермические. [c.40]

    Однако в лабораторной практике, несмотря на все вышеизложенное, значительно более простые методы определения числа теоретических тарелок для тарельчатых колонн можно использовать также для насадочных колонн, если ясно представлять все взаимосвязи и отдавать себе отчет в том, что эти расчеты представляют собой лишь надежные приближения без строгого теоретического обоснования [101]. Об этом можно получить определенное представление, если проанализировать работу тарельчатой и насадочной колонн одинаковых размеров и в обеих колоннах провести разделение при равных условиях. Если обе колонны обладают одинаковым эффектом разделения, мы можем сказать, что обе колонны эквивалентны определенному числу теоретических тарелок. [c.107]

    Для определения значения теплового эффекта при определенном давлении необходимо иметь уравнение состояния или эквивалентные данные для каждого вещества, участвующего в реакции. Для идеальных газов тепловой эффект не зависит от давления, так как в этом слу-f дН  [c.129]

    Применение ТЭС на двигателях с невысокой степенью сжатия и в бензинах с небольшим октановым числом и невысоким содержанием ароматических углеводородов более эффективно, чем применение ТМС (табл. 5. 13). В высокооктановых бензинах тетраметилсвинец обладают лучшей детонационной стойкостью, чем ТЭС [25]. При замене ТЭС на эквивалентное количество ТМС (по металлу) повышаются дорожные октановые числа бензинов в среднем на одну — две единицы [25—31]. Наибольший эффект при применении ТМС наблюдается при оценке антидетонационной стойкости в дорожных условиях, меньший — при определении октановых чисел но моторному методу по исслед. методу замена ТЭС на ТМС сказывается на октановых числах очень незначительно (табл. 5. 14, 5. 15). Увеличение содержания ароматических углеводородов в бензине повышает относительную эффективность ТМС (см. табл. 5. 14). В бензинах, содержащих более [c.288]

    Эмпирическое обоснование первого закона термодинамики дается опытами Джоуля (1840—1845), который показал, что всегда требуется одна и та же механическая работа, чтобы нагреть определенное количество воды на 1°. Этот результат представляет собой так называемый принцип эквивалентности, который Томсон сформулировал следующим образом если из термических источников получается или в результате термических эффектов уничтожается одно и то же количество механической работы, то исчезает или возникает одно и то же количество теплоты. [c.17]


    Перенос теплоты теплопроводностью и излучением, а также эффект Смолуховского (влияние давления), который зависит от размера этого жидкого клина, учитываются подстановкой эквивалентных коэффициентов теплопроводности Xs, ч при суммировании индивидуальных локальных коэффициентов теплопроводности. В конце концов расчет для всей ячейки дает следующее уравнение для определения [c.427]

    НИИ, эффект более благоприятного распределения электронной плотности в переходных состояниях полифункциональных (многокомпонентных) систем. С другой стороны, этот благоприятствующий реакции энтальпийный вклад сопровождается практически эквивалентным уменьшением энтропийного члена ТА5- . Об определенной общности наблюдаемого явления свидетельствует то, что для 10 различных [c.96]

    Чувствительность Ь инструментальных методов анализа определяется фактором пересчета показаний прибора (обычно в единицах шкалы) на содержание вещества в гравиметрии — это обратная величина стехиометрического гравиметрического фактора (Ь=1//). Чем меньше /, тем больше чувствительность метода и тем меньше абсолютная ошибка гравиметрического определения количества вещества х. В объемных методах анализа фактору f соответствует эквивалентная концентрация с применяемого титранта. Чтобы ошибка определения была невелика, а чувствительность метода высока, эта величина должна быть как можно меньшей, что способствует получению интенсивного сигнала у. Однако при этом начинает сказываться эффект разбавления, что приводит к систематическим ошибкам определения, поэтому следует выбирать оптимальную величину Сз. [c.457]

    При низкой напряженности влияние электрического поля сводится к приданию хаотическому тепловому движению ионов определенного направления. При более высоких напряженностях поля ион заметно ускоряется, взаимодействие с ионной атмосферой уменьшается и эквивалентная электропроводность увеличивается. Относительное увеличение электропроводности для ассоциированных электролитов намного выше, чем для неассоциированных. Эти эффекты известны как эффекты Вина, наибольший вклад в их изучение был сделан Бергом и Паттерсоном [8, 9]. [c.13]

    Если частота переменного тока ниже 10 Гц, то сопротивление электролита не должно зависеть от частоты, поскольку при таких частотах не проявляется эффект релаксации ионной атмосферы. Отсутствие частотной зависимости может служить критерием определения чисто омического сопротивления ячейки. Однако в общем случае импеданс, измеряемый с помощью моста переменного тока, а следовательно, и Са зависят от частоты. Чтобы понять причины этого явления, следует рассмотреть эквивалентную электрическую схему ячейки для измерения электропроводности (рис. 2.7). Каждый из электродов здесь [c.94]

    Постоянство потока питания UFe в верхней части каскада и общего обратного потока в его нижней части приводит к саморегулированию устойчивого распределения гексафторида урана, если разделительная ступень реагирует на возрастание концентрации UFe увеличением коэффициента деления потока 0 [5.18J. Собственно говоря, возрастание ви эквивалентно увеличению переноса UFe в буферную систему, где излишек UFe накапливается. Если ступень реагирует на возрастание концентрации UFe уменьшением ви, UFe-буфер должен быть перенесен в нижнюю часть каскада для получения того же самого эффекта. Рассмотрение, относящееся к устойчивости распределения UFe, не зависит от скорости отбора продукта и коэффициента деления потока гексафторида урана. Подобно способам разделения чистого гексафторида урана метод разделительного сопла, использующий вспомогательный газ, требует при каскадировании определенного соединения ступеней, соответствующего данному значению 0и-Обычно характер соединения выбирают из условия, чтобы в трубопроводах смешивались только потоки с одинаковым изотопным составом. На рис. 5.7 представлена схема каскада с коэффициентом деления потока 0и=1/4, которая представляет наибольший практический интерес. Тонкая регулировка 0и возможна в отдельной разделительной ступени на основе использования регулирующих вентилей, установленных в линии отбора тяжелой фракции. [c.241]

    Третий компонент в латуни прежде всего изменяет ее структуру. Диаграммы состояния тройных латуней изучены недостаточно, поэтому для определения ожидаемой структуры исходят из представления о так называемых коэффициентах замены цинка (коэффициенты эквивалентности). Третий элемент действует на структуру латуни так же, как и цинк, но эффект от добавки 1 % элемента иной. Приняты следующие значения коэффициентов эквивалентности для кремния 10—12, алюминия 4—б, олова 2, свинца 1, железа 0,9, марганца 0,5 и никеля минус 1,3, т. е. все добавки сужают -область, а никель расширяет. [c.218]

    Вторым, очень важным энтропийным эффектом является большая устойчивость металлических хелатов (см. определение хелата в разд. 3 гл. I). Аммиак и этилендиамин (еп) координируются ионом металла через аминный азот с точки зрения количества теплоты, выделяющейся в реакциях комплексообразования, две молекулы ЫНз эквивалентны одной молекуле еп. Однако комплексы этилендиамина значительно устойчивее, чем аналогичные комплексы аммиака (например, 1Ы1(ЫНз)0] +, 1 2 =" 6-10 /Сз/< 4 = = 5 10 =3. [Ы1(еп)з1 +, / 1-2-10 Кг= 1,2-10 Кз = 1,6-10 ). Экспериментально было показано, что большая устойчивость соединений этилендиамина обусловливается большим возрастанием энтропии, связанным с их образованием. [c.143]


    Подтверждение этих идей можно найти в теоретических работах [79, 80], упомянутых выше. Как большая средняя величина угла ОСП, так и меньшая средняя длина С — 0-связи приводят к увеличению и, таким образом, к уменьшению энергии делокализации. Основным фактором, определяющим параметр электроотрицательности, является меньшая длина С — 0-связи. Уменьшение длины С — 0-связи приводит не только к изменению внутренней полярности связи, но и, что, по-видимому, еще важнее, к сокращению среднего расстояния Н Н. В результате повышается способность дейтерированной метильной группы как единого целого к отталкиванию электронов. Таким образом, мы снова видим, чтб стерические и полярные эффекты эквивалентны, когда атомы водорода связаны с одним и тем же атомом углерода. Поскольку длина С — 0-связи меньше, за счет этого фактора энергия делокализации дейтерированной молекулы увеличивается. В конкретном случае дейтерированного иона этилкарбония суммарный эффект будет, по-видимому, заключаться в чисто гиперконъюгационной дестабилизации. Для ионов же карбония вообще и даже для самого этилкарбониевого иона можно с уверенностью говорить лишь о том [80], что повышенная эффективная электроположительность псевдоатома Оз и большая величина Оз = С-перекрывания будут сказываться на энергии делокализации противоположным образом . При этом из-за недостатка данных трудно с достаточной определенностью судить не только о величине, но даже и о направлении суммарного эффекта . [c.132]

    Во втором случае, когда свет может испытывать двулучепреломление между поляризатором и дпхроичнььм веществом, т. е. в электродах кристалла или во входном окне кюветы, проявляется другой эффект. Чтобы рассчитать, какой вклад он дает, мы заменим этот эффект эквивалентной кристаллической пластинкой с определенными осями и запаздыванием. Тогда можно оценить порядок величины допустимого двулучепреломления. Предположим, что введенная кристаллическая пластинка имеет запаздывание у и ее оси Ох и Оу образуют угол р с осями ОХ и ОУ модуляторного кристалла (рис. 38), которые сами накло- [c.92]

    Второе направление по сз ществу эквивалентно определению влияния температуры на величину коэффициента К или эффектив ную вязкость при постоянном градиенте скорости. При этом предполагается, что степенной закон течения применим во всем исследуемом диапазоне изменения температур и градиентов скорости Гер. уравнения (23) и 24)]. [c.51]

    Если значения основных интегралов вычислить точно, возникают некоторые затруднения. В случае молекулы водорода Слэтер (1951) показал, что обменный интеграл а имеет положительное значение, если пренебречь перекрыванием. Для получения отрицательного значения а нужно учитывать перекрывание. Мак-Уини [1954 (а)] показал, что в случае молекулы водорода применение базисного набора ортогональных орбиталей ведет к парадоксальному заключению, что формально ковалентная структура отвечает сильному отталкиванию между связанными атомами. Высокая плотность заряда между атомами и связь, которая при этом образуется, возникают, когда волновая функция содержит пары структур, учитывающие возможность своего рода скачка между атомами. В теории валентных связей, основанной на базисе строго ортогональных атомных орбиталей, связь является результатом межконфигурационных эффектов. Было показано [Мак-Уини, 1954 (б)], что стандартные структуры с валентными связями эквивалентны определенным группиров- [c.89]

    При фиксированных значениях параметров процесса концентрации реагентов и температура в реакторе определяются совместным решением уравнений (VII.2), (VII.5) или (VII.7), (VII.8). Легко заметить, что эти уравнения полностью эквивалентны уравнениям материального и теплового балансов на внешней равнодоступной поверхности катализатора (см. раздел II 1.3). oглi нo полученным там результатам, при определенных условиях система уравнений материального и теплового балансов может иметь несколько решений, соответствующих однозначно заданному набору характерных параметров процесса. Появление множественных режимов возможно в случае, когда реакция ускоряется одним из ее продуктов или тормозится одним из исходных веществ, а также в случае экзотермической реакции со значительным тепловым эффектом. В этих условиях при плавном изменении температуры исходной смеси или теплоносителя температура реактора изменяется скачком в критических точках перехода между режимами поэтому на графике зависимости Т от Т появляется характерная гистерезисная петля (как на рис. III.4). Заметим, что, в отличие от процессов на внешней поверхности зерна, при проведении процесса в реакторах идеального смешения возможна ситуация, когда не только промежуточный, но и один из крайних режимов становится неустойчивым. Рассуждения, основанные на анализе стационарных уравнений, которые привели к условию неустойчивости (III.51), доказывают только неустойчивость промежуточного режима, но еще не свидетельствуют об устойчивости тех режимов, для которых неравенство (III.51) не удовлетворяется. Более того, существует область значений параметров процесса, в которой имеющийся единственный стационарный режим реактора [c.277]

    Таким образом, каждый амфипротный растворитель приме-JiHM только для кислоты или основания вполне определенной рилы. В противном случае происходит эффект нивелирования или сольволиз. Чем меньше константа диссоциации растворителя, теМ большее число соединений можно в нем определить. С этой точки зрения лучшими растворителями для кислотноосновного титрования должны быть инертные апротонные недиссоциированные растворители первой группы. Однако эти растворители обычно очень слабо полярны, поэтому растворимость и диссоциация солей в них часто затруднена. Это приводит к незначительной электропроводности растворов и затрудняет электрометрическую индикацию точки эквивалентности. [c.342]

    Тепловые эффекты и периодический закон. Для неорганических соединений тепловые эффе1сты однотипных процессов являются периодической функцией порядкового номера соответствующего элемента. Для физических превращений это показано на рис. 11, для химических— на рис. 12. Рис. 12 как бы распадается на несколько областей зона острых и абсолютных пиков (хлориды 5-элементов), область сглаженных и меньших максимумов (хлориды р- и -элемен-тов) и область сравнительно небольшого изменения значений АЯобр (хлориды /-элементов). Господствующие пики занимают хлориды щелочных металлов, меньшие пики — 2пС12 и Сс1С12. Надо иметь в виду, что для многих соединений значения АЯобр неизвестны или определены лишь для газообразного и жидкого состояний. Кроме того, не всегда известны значения АЯ бр соединений, в которых элемент находится в степени окисления, отвечающей номеру группы или близкой к нему. Увеличение степени окисления приводит к уменьшению грамм-эквивалентной АЯобр (это видно на примере иС1 ). Наконец, надо учитывать и различия в характере связи, координации и т. д. Тем не менее, рис. 12 не только дает общую картину периодичности, но и свидетельствует об определенных закономерностях в изменении АЯобр хлоридов. В частности, мысленно соединив точки для [c.27]

    В табл. 3.7 приведены наиболее важные сопряженные кислотно-основные пары. Для кислот с р/Сд < —1,74 алкалиметрически титруется НдО , образовавшийся вследствие нивелнру1ош,его эффекта воды. Кривые титрования слабых электролитов представлены иа рис. 3.4, из которого следует, что с увеличением значения рКд скачкообразное изменение pH в точке эквивалентности уменьшается. Чем слабее кислота, тем дальше сдвигается показатель титрования в щелочную область. Этим руководствуются при выборе окрашенного индикатора. Четкого определения конечной точки нельзя достигнуть уже при титровании кислот с рА д 9. [c.78]

    В некоторых случаях конец реакции титрования может быть установлен непосредственно по какому-либо аналитическому эффекту, сопровождающему реакцию. Например, при перманганатометрическом титровании бесцветных анализируемых растворов точку эквивалентности определяют по розовой окраске, появляющейся от добавления 1 капли избытка раствора КМПО4. Такое титрование называют безындикаторным. Однако в большинстве случаев в химических методах анализа прибегают к введению в исходную систему титруемого вещества — титрант другой системы— индикаторной, реагирующей с исходной. Эта вторичная реакция, сопровождающаяся определенным аналитическим эффек- [c.153]

    Момент титрования, когда наблюдается внешний эффект реакции между индикатором и рабочим раствором реагента К (или определяемым веществом X) называют конечной точкой титрования. Расхождение между конечной точкой титрования и точкой эквивалентности, т. е. неравенство рТ и рХ кв (или рНэкв) является одной из причин возникновения погрешности титрования. Важно правильно оценить влияние свойств продукта реакции и реагента на точность титрования и уметь определить допустимое расхождение рТ и рХэкв (или рКэкв), которое не вносит еще чрезмерной ошибки в определение. [c.140]

    Для идентификации (обнаружения) и определения веществ проводят химические реакции в сухом виде или в растворе. Такнс реакции называют аналитическими. Они всегда сопровождаются каким-нибудь внешним эффектом выделением или растворением осадка, образованием растворимого окрашенного соединения, выделением газа с определенными свойствами (запах, цвет и др.). Проду1чты аналитических реакций нередко необходимо идентифицировать введением каких-либо третьих компонентов. Так, при титриметрических определениях в реакционный сосуд вводят индикатор, который изменением цвета указывает на достижение точки эквивалентности. Газы, которые не имеют запаха или являются токсичными, идентифицируют с помощью других аналитических реакций. Например, при )астворепип минерала в кислоте установлено выделение газа без запаха и цвета. Отходящий газ можно пропустить через раствор гидроксида бария белый осадок, легко растворимый в уксусной кислоте, указывает на выделение диоксида углерода. [c.537]

    Изменение pH в точке эквивалентности (скачок) тем меньше, чем слабее определяемая к-та или определяемое основание и чем меньше их концентрация. Чем меньше скачок pH, тем больше погрешность результата титрования при прочих равных условиях. С целью уменьшения погрешности для усиления основных св-в определяемых в-в процесс проводят в неводных кислых р-рителях, напр, в уксусной к-те, а для усиления кислотных свойств в-в — в неводных основных р-рителях, напр, в этилен диамине. Кислые неводные р-рители проявляют дифференцирующий эффект, к-рый позволяет раздельно определять две сильные к-ты. Аналогичный эффект характерен для основных неводных р-рителей при титровании сильных оснований. Для усиления кислотности В-в используют также комплексообразование (напр., при определении НзВОз в р-р добавляют маннит). вГуляницкий А., Реакции кислот и оснований в аналитической химии, пер. с польск., М., 1975. Б. Я. Каплан. [c.257]

    Совершенно ясно, что тонкая структура спектров ЯМР жидкостей не обусловлена прямым магнитным взаимодействием через пространство спиновых магнитных моментов (диполей) ядер, хотя подобное взаимодействие играет важную роль при исследовании спектров твердых тел [5, стр. 152 и сл.]. Теоретически показано, что благодаря тепловому хаотическому движению молекул составляющая локального поля у любого ядра, параллельная внешнему полю и возникающая в результате прямого взаимодействия диполей, усредняется до нуля [5, тр. 118]. Это эмпирически подтверждается тем, что резонансные спектры жидкостей, обусловленные только магнитноэквивалентными ядрами, ни при каких условиях не расщепляются. Например, наличие в метильной группе трех протонов сказывается на площади резонансной кривой, но не на ее множественности (см. рис. 5,6). В настоящее время считается, что тонкая структура обусловлена косвенным взаимодействием ядерных спннов через валентные электроны. Хотя суммарный спиновый магнитный момент электронов в ковалентной связи или заполненной оболочке благодаря спариванию электронных спинов равен нулю, ядерный диполь вызывает слабую магнитную поляризацию валентных электронов [32—34]. Электронная спиновая плотность, не равная нулю, появляется в других облястях связи и в зависимости от степени делокализации электронов, возможно, на более далеких расстояниях. Соседний ядерный диполь взаимодействует со спиновой плотностью в этой области, и (квантованная) энергия системы зависит от относительной ориентации обоих спиновых моментов ядер, а также от их ориентации во внешнем магнитном поле. Подобное косвенное взаимодействие не усредняется в жидкостях до нуля за счет хаотического движения молекул и вызывает расщепления, не зависящие от внешнего поля, имеющего определенный порядок величины [32]. Кроме того, как будет показано далее, постулированное взаимодействие таково, что взаимодействие между полностью эквивалентными ядрами не приводит к появлению таких эффектов, которые можно было бы установить экспериментально. [c.289]

    Если слой составлен из шаров одинаковопо диаметра, уложенных в определенном порядке, то при отсутствии стеночного эффекта распределение газов по сечению будет равномерным. Если же шары расположить хаотически или заменить их кусками неправильной формы, допустив неодинаковые размеры кусков и т. п., ТО поле эквивалентных отверстий не будет для каждого сечения равномерным и поэтому неравномерным будет распределение газов. В этих условиях входные и выходные граничные условия, т. е. подача дутья внизу и отбор газа вверху шахты, могут играть существенную роль, усиливая или ослабляя эффект неравномерного распределения газов. [c.420]

    Электропроводность коллоидного раствора слагается из электропроводности, обусловленной коллоидными частицами, и электропроводности находящихся в растворе электролитов. Если посторонних электролитов в растворе очень мало (высокоочищенные растворы белков и полиэлектролитов), измерениями электропроводности можно воспользоваться для определения удельного заряда или подвижности частиц, однако, в лиофобных золях определить собственную электропроводность коллоидных частиц довольно трудно. Существенное влияние на собственную электропроводность частиц оказывает структура двойного электрического слоя, так как подвижность компенсирующих ионов ограничивается электрофоретическим торможением со стороны коллоидных частиц (более медленно передвигающихся в поле, чем ионы) и скоростью перестройки ионной атмосферы в переменном поле (эффект релаксации). В свою очередь, измерениями электропроводности в широком диапазоне частот (дисперсия электропроводности) пользуются при изучении структуры двойного слоя. В растворах полиэлектролитов (например, полиакриловой кислоты) измерения эквивалентной электропроводности X при различных концентрациях представляют интерес для характеристики формы молекул, так как значения X падают в той области концентраций, в которой расстояния между молекулами полимера становятся велики по сравнению с толщиной двойного электрического слоя (Каргин). Измерения электропроводности коллоидных растворов при их взаимодействии с нейтральными солями (метод кондуктометриче-ского титрования) широко применялись при исследовании состава двойного слоя и процессов вытеснения из коллоидных частиц, например, подвижных Н+-ионов (Паули, Рабинович). [c.131]

    Пятая глава посвящена исследованию напряженного состояния геометрически неоднородного сварного соединения на некоторых экстремальных стадиях технологического процесса. К таким стадиям прежде всего относится паровыжиг кокса, отложившегося на внутренней поверхности труб змеевика печи пиролиза. Несмотря на то, что используются различные ингибиторы коксоотложения, на практике не удается избежать этого эффекта. Периодически процесс останавливается и проводится выжиг кокса, который заключается в нагреве змеевика работающими горелками до определенной температуры и подаче водяного пара. Происходит локальное воспламенение кокса, после чего фронт пламени движется вдоль трубы. В процессе выжига пирометром зафиксированы температуры в зоне локального горения, достигающие 950-1000 °С. Чирковой А.Г. с использованием моментной теории оболочек показана концентрация напряжений в зонах локальной потери устойчивости формы в зонах горения кокса. Условные эквивалентные напряжения существенно превышают предел прочности материала, и мгновенное разрушение не происходит только вследствие малого времени горения. Однако моментная теория оболочек позволяет решать осесимметричные задачи, что в случае сварных швов с дефектами геометрии не [c.17]

    Разработан метод выделения натрия с использованием фронтальной динамики [2091. При пропускании воды через колонку ионообменника из-за эквивалентности обмена концентрация менее сорбируемого иона в фильтрате достигает суммарной концентрации катионов в исходной смеси, после чего эффект вытеснения проявляется в расширении зоны вытесняемого иона. Второй, более сорбируемый компонент смеси (например, натрий) начинает проявляться в фильтрате после того, как концентрация менее сорбируемого иона, после достижения суммарной концентрации смеси, начинает снижаться. Пробы для анализа следует брать на восходящей ветви выходной кривой натрия, вблизи к максимуму концентрации. В сочетании с изотопным разбавлением метод применен для определения натрия в морской воде. [c.50]

    В простейших экспериментах с применением С, при которых получаемые результаты эквивалентны результатам работ с радиоактивным С, важнейшим фактором является заметное природное содержание С. Именно этот фактор стимулировал развитие инструментальной техники ЯМР С и сделал реальной интерпретацию спектров. С другой стороны, этот фактор ограничивает чувствительность ЯМР как метода детектирования включенной метки. Если предшественник в каком-то определенном положении мечен на 100%, то, конечно, соответствующие сигналы в его спектре будут интенсивнее сигналов при природной концентрации, составляющей около 1 % Для надежного обнаружения введенной метки ее максимально допустимое разбавление должно быть не выше 100-кратного, а для сколько-нибудь точного количественного определения оно должно быть значительно ниже. Более того, в идеальном варианте необходимо количественное сравнение включенной в несколько различных положений метки здесь уже появляются проблемы, связанные с использованием преобразования Фурье в методе ЯМР. Так, на интенсивность сигналов в спектре ЯМР С заметно влияют релаксационные эффекты, различные для разных атомов углерода эти эффекты трудно воспроизводимы даже в различных спектрах одного и того же соединения. Эта трудность может быть преодолена [70] путем применения парамагнитных релаксационных реагентов , например трис(ацетил-ацетоната)хрома (III) [116, 117], специальных приемов подавле- [c.476]

    Отрезок кривой СО редко бывает параллельным оси объема титранта, так как изменение температуры в этот период обусловлено многими факторами, а именно теплотой разбавления титранта, который часто бывает в 50—100 раз более концентрированным, чем титруемый раствор, теплотой перемешивания, джоуль-эффектом термистора, различием температур титранта и титруемого раствора и изменением теплоемкости системы за счет изменения объема раствора. Происходящее в результате этих процессов изменение температуры имеет место и во время всего титрования, что должно быть учтено ири определении величины АТ. Для проведения количественного анализа температурная калибровка системы не обязательна, так как требуется только знание величины отрезка ОС, или объема титранта, который принял участие в селективной реакции. Таким образом, возможность использования энтальпограммы для целей количественного анализа зависит от точности и воспроизводимости определения точки С, которая позволит рассчитать объем титранта. Отчетливость изгиба на кривой в конечной точке титрования будет определяться величиной изменения энтальпии наибольшее изменение энтальпии приводит к более резкому изменению наклона кривой в эквивалентной точке. [c.12]

    Кейли и Хьюм показали, однако, что в случае простого титрования, когда титрант имеет одинаковую с титруемым раствором температуру и изменение температуры происходит только в результате химической реакции, начальный участок кривой тигроваиия можио экстраполировать и получать, таким образом, скорректированную величину АТ для эквивалентной точки реакции. Использование способа определения АТ по величине первоначального наклона кривой особенно удобно, потому что он характеризует теплоемкость начальной системы, в которой ведется измерение. Закругление кривой у конечной точки титроваиия, вызванное незавершенностью реакции, при этом не влияет на результат определения величины теплового эффекта реакции. Ошибка, связанная с различием температур титранта, находящегося в запасном резервуаре, и титруемого раствора является минимальной, так как реагент в конце бюретки находится в термическом равновесии с титруемым раствором. Величина теплоты реакции между ацетатом натрия и хлорной кислотой в ледяной уксусной кислоте, полученная Кейли и Хьюмом, хорошо согласуется с ранее опубликованными данными. [c.134]

    Цетлемойер и сотр. [92] описали также конструкцию калориметра для определения теплот смачивания жидким азотом. Калориметрический стеклянный стакан помещается в сосуд, содержащий 250 мл жидкого азота. При разбивании ампулы выделяемое тепло испаряет эквивалентное количество азота, объем которого измеряется при помощи газовой бюретки. Воспроизводимость составляет 5% суммарного теплового эффекта, равного 6—18 кал. Навеска адсорбента в опытах Цетлемойера равна 4—10 г. Тейлор [105] усовершенствовал этот калориметр и достиг воспроизводимости измерений приблизительно 2% для образцов с площадью поверхности не меньше 150 м . [c.390]

    Для определения эффекта, вносимого взаимным влиянием шпилек, поступим следующим образом. Представим себе, что объемлющая деталь (корпус) эквивалентна стяжке, толщина стенки которой равна половине ширины перемычки в наиболее узком месте между шпильками. Это вполне правомерно, так как массивная часть корпуса ограничивает гнездо под шпильки лишь с одной стороны — стороны, обращенной к оси корпуса. Перемычки же между гнездами под шпильки и перемычка между гнездом и внешней поверхностью фланца корпуса приблизительно равны по толщине, и эти зоны охватывают гнездо под шпильку в большей степени, чем массивная часть корпуса. Для этого соединения подсчитьшаем велитену усилия в первом наиболее нагруженном витке шпильки. Интенсивность распределения осевых сил вдоль соединения типа стяжки имеет вид [32] [c.168]

    Определение числа циклов нагружения до разрушения аппарата производится по максимальным эквивалентным напряжениям, рассчитанным согласно гипотезе максимального касательного напряжения (гшотеза Треска-Геста) [40]. При этом трехосное напряженное состояние задается меридиональными, кольцевыми и осевыми напряжениями. Причем эти напряжения представляют собой определенную совокупность напряжений, обусловленных действием внутреннего давления, неравномерностью распределения температуры в оболочке реактора, краевым эффектом при сопряжении оболочковых форм различной жесткости, собственным весом аппарата, а также наличием остаточных сварочных напряжений. Данная совокупность напряжений определяется для конкретного промежутка времени, для чего весь цикл коксования разбивается на участки по вреш-ни, в пределах которых происходит незначительное изменение всех характерных нагрузок. Иа конечном этапе расчета после определения вышеперечисленных напряжений выбираются максииаль-ные эквивалентные напряжения, по которым и определяется число циклов нагружения до разрушения. Далее находят приведенную долговечность узла [c.44]

    Одним из таких типов взаимодействия является так называемый эффект Давыдова [37, 40], представляющий собой взаимодействие между нетрансляционно эквивалентными молекулами одной элементарной ячейки кристалла. Такие взаимодействия могут приводить к расщеплению спектральных переходов на величины от см для переходов с малой интенсивностью до 10 С./М для переходов с большой интенсивностью. Такие взаимодействия изучались довольно подробно для ароматических молекулярных кристаллов и фталоцианинов, но для получения определенных результатов еще много предстоит сделать. Для настоящего изложения существенно лишь то, что в случае, когда снимаются спектры кристаллов, расщепления почти всегда невелики, если переход малоинтенсивный (е<100), но для переходов с большой интенсивностью (типа переходов с переносом заряда) можно ожидать очень больших расщеплений и перераспределения интенсивности, приводящих даже к полному изменению вида спектра. [c.246]


Смотреть страницы где упоминается термин эффектов эквивалентный вес, определение: [c.583]    [c.80]    [c.18]    [c.139]    [c.77]    [c.95]    [c.42]    [c.131]    [c.111]    [c.147]    [c.53]    [c.397]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте