Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление топлива

    Метод определения термической стабильности топлив заключается в установлении количества осадка, образовавшегося при окислении топлива в приборе ЛСА-1 нри температуре 150° С в течение 1 ч. [c.199]

Таблица 2.7. Количество кислорода, поглощенного исходными и окисленными топливами и углеводородами Таблица 2.7. Количество кислорода, поглощенного исходными и окисленными топливами и углеводородами

    Необходимость многоступенчатой фильтрации объясняется тем, что микрозагрязнения в топливах появляются как в результате засорения топлива извне (атмосферной пылью, продуктами коррозии топливопроводов и резервуаров и т. п.), так и в результате непрерывного окисления топлива в процессе хранения. Таким образом, если топливо было тщательно очищено от загрязнений при сливе его в резервуары, то через определенный срок хранения в топливе опять накапливаются микрозагрязнения и необходимость фильтрации возникает вновь. [c.45]

    Обычно зарождение цепей в окисляемых углеводородах происходит по обоим механизмам — гомогенному и гетерогенному. Вклад каждого механизма в суммарную скорость зарождения цепей зависит от условий окисления — соотношения объема углеводорода и поверхности реактора, скорости диффузии кислорода к поверхности металла и т. ц. Так, например, при длительном хранении топлив в больших резервуарах зарождение цепей будет происходить преимущественно по гомогенному механизму. При жидкофазном окислении топлива в реакторе в условиях интенсивного перемешивания смеси и барботирования кислорода зарождение цепей с большей вероятностью происходит по гетерогенному механизму. Гетерогенный механизм зарождения цепей остается постоянным при окислении углеводородов как в газовой, так и в жидкой фазе. Иначе обстоит дело при гомогенном зарождении цепей. [c.29]

    С постоянной и малой скоростью протекает окисление топлив, содержащих противоокислители (ингибиторы), характеризующиеся высоким стехиометрическим коэффициентом ингибирования, как это показано на рис. 2.5 (кривая 5). В этом случае ингибитор тормозит окисление в течение всего процесса. Наличие автоускорения по окончании периода индукции (кривая 4) характерно для топлив с ингибиторами, продукты превращения которых менее эффективны по сравнению с исходными веществами. Неингибированное и ингибированное топливо может окисляться с самого начала процесса с автоускорением (кривые 1, 2 и 3) при этом конечная скорость Гк окисления топлива, в которое был добавлен ингибитор, может быть больше (кривая 2) или меньше (кривая 3) конечной скорости Го окисления топлива без ингибитора. Соотношение (го/Гк)-с1 свидетельствует о том, что реакции, ведущие к регенерации ингибитора [c.45]

    При барботировании воздуха и особенно кислорода при 120 °С скорость зарождения свободных радикалов в топливе Т-6 становится больше, чем в топливе РТ. Причины указанного явления пока не выяснены. Оно может быть объяснено большей скоростью распада (при высоких температурах) гидропероксидов, образующихся при окислении топлива Т-6, а также ингибирующим действием продуктов окисления ароматических углеводородов. Какой-либо существенной зависимости скорости зарождения цепей от длительности хранения топлива в описываемых экспериментах не обнаружено. Начальная скорость зарождения радикалов в топливах и выделенных из него фракций одинакова. После накопления гидропероксидов в концентрациях около 2 ммоль/л они становятся основными инициаторами окисления. В этих случаях в атмосфере азота для топлива Т-6 при 120 °С имеем Гг = 50-103 моль/(л-с) [43] [c.47]


    И.з формулы (86) следует, что с увеличением содержания ароматических углеводородов цетановое число понижается. Для его повышения из дизельных фракций извлекают ароматические углеводороды или применяют специальные добавки, из которых наиболее эффективны алкилнитраты, гидроперекиси и другие соединения, ускоряющие процесс. предпламенного окисления топлива и облегчающие таким образом его воспламенение. При добавлении 1,5—2,0 объемн. % таких присадок цетановое число повышается на 16—20 пунктов. [c.111]

    При таком окислении об окисляемости топлив судят по времени расходования 50% кислорода, по времени достижения максимальной концентрации образующихся продуктов окисления (например, гидропероксидов) и по численному значению этой концентрации. Результаты окисления топлива Т-6 при 150°С, имевшего исходную концентрацию растворенного кислорода примерно 1,8 ммоль/л, показывают, что пероксиды, спирты и карбонильные соединения являются промежуточными продуктами окисления [54]. Их концентрации в ходе испытания проходят через максимумы, смещенные по времени друг относительно друга. Первым достигают максимума соединения, имеющие функциональную группу ООН, затем соединения с ОН и СО и, [c.50]

    На окисление топлива растворенным кислородом может существенно влиять соотношение площади поверхности контакта с газовой фазой и объема топлива. Это влияние обусловливается неравномерным распределением концентраций растворенных газов по высоте топлива в тонких слоях. В поверхностном слое топлива растворяется значительно больше газов, в том числе и кислорода, чем в аналогичных по толщине слоях, расположенных в остальном Объеме топлива. В связи с этим количество газов, поглощенных предварительно дегазированным топливом, сильно зависит от высоты его налива [61]. [c.51]

    Наряду с реакциями окисления протекают также реакции деструкции (в результате чего появляются низкомолекулярные вещества, например кислоты), реакции конденсации и полимеризации, ведущие к возрастанию молекулярной массы конечных продуктов — смол. Образующиеся при окислении топлива смолы, так же как и нефтяные смолы, переходящие в топливо при переработке нефти, содержат углерод, водород, кислород, серу и азот. При этом доля двух последних элементов в продуктах окисления и уплотнения больше, чем в исходном топливе. Это указывает на существенную роль неуглеводородных органических соединений в образовании осадков и отложений. [c.52]

    Оценку термической стабильности дизельного топлива проводят по массе образующегося осадка и изменению кислотности при окислении. Окисление топлива (70 мл) при температуре 150°С с продувкой воздухом в присутствии меди проводят в реакционном сосуде, представляющем собой стеклянную пробирку со змеевиком снаружи и сеткой внутри для подачи и барботажа воздуха через испытуемое топливо. Продолжительность испытания 5 ч при скорости подачи воздуха 6 л/ч. Окисленное топливо в горячем виде сливают в химический стакан и после охлаждения определяют массу осадка и его кислотность. Оценку результатам испытания опытного образца дают в сравнении с результатами испьггания эталонного (товарного) топлива. [c.114]

    Содержание антиокислителей-ионола в топливе определяют по методу, разработанному группой авторов [99]. Метод заключается в окислении топлива кислородом воздуха при температуре 120 °С в присутствии инициатора окисления, последующем измерении периода индукции окисления по накоплению гидропероксидов и определении концентраций ионола по калибровочному графику, построенному в координатах период индукции — концентрация ионола. [c.149]

    Термоокислительную стабильность после окисления топлива при 100 С определяют с помощью прибора ЦИТО-М [111]. По принципу движения топлива и конструкции этот прибор является аналогом описанного вьппе прибора ЦИТО-С (см. рис. 61). Основными отличиями является то, что он изготовлен из нержавеющей стали и на пути максимально нагретого топлива имеется фильтр из металлической сетки саржевого плетения (размер пор 12-16 мкм). [c.168]

    В результате процессов окисления при длительном хранении топлив в них накапливаются продукты окисления, конденсации и полимеризации углеводородных и гетероатомных соединений. Процессы, происходящие при хранении топлива для судовых ГТУ, аналогичны таковым при окислении дизельных топлив. Склонность к изменению качества или иначе стабильность при хранении топлив для судовых ГТУ оценивают по методу, заключающемуся в определении изменения кислотности и содержания высокомолекулярных продуктов при регламентированных условиях окисления топлива (см. гл. 4). [c.181]

Рис. 105. Изменение содержания антиокислителя при окислении топлива в присутствии металлов Рис. 105. <a href="/info/1519943">Изменение содержания</a> антиокислителя при окислении топлива в присутствии металлов
    При окислении таких топлив образуется мало продуктов, отлагающихся в топливных системах. Но среди них есть соединения, агрессивные к уплотнительным материалам топливных систем. Прежде всего это гидропероксиды и свободные радикалы. При наличии в топливе гидропероксидов тиоколовые герметики, используемые в топливных баках самолетов, разрушаются. Алкильные и пероксидные радикалы вызывают потерю эластичности резин, применяемых в различных топливных агрегатах самолетов и двигателей. Несколько в меньшей степени продукты окисления топлива ухудшают его другие эксплуатационные характеристики. Подробно эти вопросы рассматриваются в гл. 7.  [c.21]


    В разделе Окисление топлива в присутствии инициатора (см. с. 55) описана методика измерения параметра а. Эта методика может быть в несколько видоизмененном виде использована и для измерения неизвестной у,. Вначале для топлива оп- [c.63]

    Измерение кинетики образования других промежуточных соединений — спиртов, карбонильных соединений, кислот — позволяет характеризовать динамику их поведения в ходе окисления топлива растворенным кислородом. Метод позволяет сравнивать топлива по окисляемости и выявить специфику окисления топлив растворенным кислородом. [c.72]

    Для сравнительной оценки склонности топлив к окислению часто используют качественные методы. Их сущность сводится к окислению топлива в тех или иных условиях и определению изменения физико-химических или эксплуатационных свойств топлив кислотности, оптической плотности, содержания в топливе смолистых и других соединений. Окисление проводят воздухом при умеренных температурах (90—120 °С) в колбах или стаканах с обратным холодильником в течение нескольких ча- [c.73]

Рис. 4.1. Кинетика инициированного окисления топлива Т-6 в координатах Рис. 4.1. <a href="/info/705036">Кинетика инициированного</a> окисления топлива Т-6 в координатах
Рис. 4.2. Кинетика инициированного окисления топлива РТ Рис. 4.2. <a href="/info/705036">Кинетика инициированного</a> окисления топлива РТ
Рис. 4.3. Зависимость V от при инициированном окислении топлива Т-6 Рис. 4.3. Зависимость V от при <a href="/info/872717">инициированном окислении</a> топлива Т-6
Рис. 4.6. Кинетика окисления топлива Т-6 растворенным кислородом в замкнутом объеме. Рис. 4.6. <a href="/info/62921">Кинетика окисления</a> топлива Т-6 растворенным <a href="/info/1751">кислородом</a> в замкнутом объеме.
    Весьма существенно определить, происходит ли окисление топлива растворенным в нем кислородом цепным или нецепным путем. Это можно установить, оценив длину цепи. Поскольку инициатор цепей — гидропероксид, необходимо сопоставить среднюю скорость окисления и со средней скоростью инициирования [c.88]

    Указанная чувствительность перечисленных выше методов недостаточна для определения содержания присадок фенольного типа в реактивных топливах. Наиболее пригоден для этой цели кинетический метод [286]—чувствительность его 0,0005% (масс.). Он одинаково пригоден для присадок фенольного и аминного типов. Метод успешно апробирован в заводских условиях. Метод основан на торможении окисления топлива ингибитором в присутствии инициатора, т. е. в кинетически контролируемых условиях. Фенолы и ароматические амины тормозят окисление, обрывая цепи при взаимодействии с пероксидными радикалами. При введении антиоксиданта в окисляющуюся систему возникает период индукции окисления, который заканчивается после израсходования всего антиоксиданта. [c.137]

    В отсутствие ингибитора окисление протекает с постоянной скоростью без периода индукции. При окислении топлива с ингибитором на кинетических кривых накопления гидропероксидов наблюдаются периоды индукции. По окончании периода [c.138]

Рис. 5.3. Кинетика окисления топлива Т-6 Рис. 5.3. <a href="/info/62921">Кинетика окисления</a> топлива Т-6
    Термическая стабильность определяется по ГОСТ 11802—66 прибором ТСРТ-2 (рис. 14). Сущность метода заключается в окислении топлива в приборе при температуре 150° С в течение 5 ч в присутствии электролитической меди. Окислившееся топливо фильтруют через обезволенный бумажный фильтр и взвешиванием определяют [c.29]

    Значительное увеличение скорости поглощения кислорода дизельным топливом в контакте с различными горными породами было установлено экспериментально при окислении на газометрической установке [74]. Приведенные на рис. 2.10 кинетические кривые окисления дизельного топлива указывают на увеличение в десятки раз скорости поглощения кислорода в контакте с некоторыми горными породами. Каталитическая активность горных пород связана с наличием в них активных микропримесей. Для практических целей склонность горных пород к гетерогенному активированию окисления топлив предложено определять методом сравнения, основанным на непосредственном-определении скорости окисления топлива в контакте с испытуемой горной породой и эталонным катализатором, например со сталью Ст. 3. В качестве критерия такой оценки предложен коэффициент каталитической активности [74], определяемый по выражению [c.59]

    К соединениям, ускоряющим предпламенное окисление топлива и тем облегчающим его самовоспламенение, относятся алкил-нитраты, алкилнитриты, арилнитраты, пероксиды, альдегиды, кетоны, и некоторые вещества, содержащие связанные между собой атомы азота и серы [176]. [c.174]

    Для этого требуется разработка гальванических элементов, в которых реакции окисления топлива и восстановления кислорода протекают электрохимическим путем. Первые попытки создать такие топливные элементы оказались неудачны1к1и из-за очень малой скорости реакции электрохимического 01< исления обычных видов топлива. Лишь в последние годы в результате применения различных катализаторов и усовершенствования конструкции элементов удалось создать первые удовлетворительно работающие лабораторные макеты топливных элементов, использующих газообразное топливо. Наиболее реакционноспособным видом топлива является водород. Водородно-кислородные элементы обычно изготовляют с применением мелкопорисТых угольных или никелевых электродов, погруженных в шелочной раствор электролита. Схематически такой элемент можио представить в виде  [c.603]

    Антидетонационная способность (иначе — детонационная стойкость) пзопарафиновых углеводородов повышается с увеличением числа метильных групп в молекуле ароматических углеводородов — с увеличением молекулярного веса и разветвлением боковых цепей нафтеновых — с разветвлением боковых цепей. Детонационная стойкость олефинов возрастает с приближением двойной связи к центру молекулы. Нормальные парафиновые углеводороды тем больше способны вызывать детонацию, чем больше их молекулярный вес. Из этого можно сделать вывод, что наименьшей детонационной стойкостью обладают те углеводороды, которые легко окисляются кислородом воздуха. При окислении их образуются гидроперекиси. С повыгаением температуры в период сжатия рабочей смеси в цилиндре двигателя гидроперекиси столь быстро распадаются с бурным выделением тепла, что происходит воспламенение образующихся продуктов. Распад гидроперекисей сопровождается образованием промежуточных соединений, способствующих возникновению новых гидроперекисей. Таким образом, окисление топлива приобретает характер цепной реакции. [c.101]

    Кислотность характеризует содержание нафтеновых кислот, перешедших из нефти, и образующихся кислот в результате окисления топлива при хранении. Влияние нафтеновых кислот на коррозионную активность дизельных топлив видно из следующих данных [82] при кислотности топлива 4 мг КОН на 100 см производительность форсунок за один ход плунжера после 500 ч работы двигателя уменьшилась на 1,9%, а при кислотности 50 мг КОН на 100см -на 15,4%, соответственно средний износ плунжерных пар составил 0,0015 и 0,0023 мм. [c.105]

    Изменение термоокнслительной стабильности. Прогнозирование изменения термоокислительной стабильности реактивных топлив при хранении, проводят по методу, разработанному группой авторов [107, с. 3-8 . Испытуемый образец топлива непрерьтно окисляется в герметично закрытых стеклянных сосудах при температуре 100 С и устанавливается время окисления топлива до изменения сверх допустимого предела его термоокислительной стабильности, определяемой в динамических условиях. Полученные результаты пересчитывают на прогнозируемое время хранения топлива в натурных резервуарах на складах горючего. [c.168]

    По результатам измерения оптической плотности проб окисленного топлива рассчитывают концентрацию хинондиимина в них, а затем скорость расходования диафена-К,> . Скорость образования свободных ради- [c.170]

Рис. 3.7. Кинетика накопления хн-нондиимина при окислении топлива Т-6 кислородом при температурах, °С Рис. 3.7. Кинетика накопления хн-нондиимина при окислении топлива Т-6 <a href="/info/1751">кислородом</a> при температурах, °С
    Сущность метода определения окисляемости топлив в замкнутом объеме заключается в окислении топлива растворенным кислородом в специальных ампулах. Измеряют кинетику поглощения кислорода и (или) образования гидропероксида. Кинетическая кривая А[02]—t имеет, как правило, 5-образный характер, кинетическая кривая накопления гидропероксида (рис. 3.9) проходит через максимум. Скорость окисления топлива характеризуют периодом поглощения кислорода наполовину от исходной концентрации ti/j или средней скоростью поглощения кислорода v=[02 o/t, максимальной концентрацией гидропероксида [ROOH] макс ИЛИ ВрбМбНвМ ДО 6G ДОСТИЖеНИЯ [c.72]

    На рис. 5.1 в качестве примера показаны кинетические кривые накопления гидропероксидов при инициированном пероксидом кумила ([ПК]=6-10 моль/л) окислении топлива РТ с различным содержанием ионола (120°С). Период индукции т находили путем экстраполяции кинетической кривой накопления ROOH [ROOH] = [ROOH] о-Ь о/. [c.138]

    Кинетические закономерности ингибированного окисления гидрогенизационных реактивных топлив и индивидуальных углеводородов аналогичны. На рис. 5.3, а представлена кинетика инициированного окисления топлива Т-6 без ингибитора и содержащего ионол (2,6-ди-трет-бутил-4-метилфенол) [287]. Без ингибитора топливо окисляется с постоянной скоростью v = a vi. В присутствии ингибитора на кинетических кривых наблюдается индукционный период, который тем больше, чем больше концентрация ионола в топливе (рис. 5.3,6) и чем меньше концентрация инициатора (рис. 5.4). Как следует из приведенных данных, для ионола в топливах выполняется за- [c.139]


Смотреть страницы где упоминается термин Окисление топлива: [c.86]    [c.58]    [c.59]    [c.60]    [c.508]    [c.171]    [c.65]    [c.79]    [c.82]   
Теория горения (1971) -- [ c.73 ]

Общая химическая технология органических веществ (1966) -- [ c.106 ]




ПОИСК







© 2025 chem21.info Реклама на сайте