Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Льюиса правило

    Это основное расчетное уравнение, действительное и для паровой и для жидкой фазы. Если допустить выполнение приближенного правила Амага, согласно которому не происходит изменения объема г-того компонента при изобарно-изотермическом смешении, то V — = О, и фугитивность компонента смеси можно приближенно представить в виде известного правила Льюиса [c.26]

    Зависимость (7-82) носит название соотношения Нуссельта. Если сравнить ее с соотношением Льюиса (7-66), то можно заметить, что в первом случае правая часть равенства представляет собой [c.99]


    Правило Льюиса и Рэндалла с достаточной точностью можно использовать при давлениях, не превышающих 200 ат. [c.168]

    Опыт показывает (правило Льюиса и Рэндаля), что при общем давлении, меньшем половины критического (Р<0,5Ркр), парциальную активность можно выразить в виде зависимости  [c.417]

    Предположив, что выполняется правило Льюиса — Рэндалла, находим по формулам (У1-73) и (У1-75)  [c.169]

    Изучение зависимости коэффициентов активности, а также ак-т1шностей от состава раствора привело Льюиса к установлению ряда важных эмпирических закономерностей и правил. В частности, было найдено, что в области низких концентраций средние коэффициенты активности электролита определяются зарядами образующихся ионов и не зависят от других их свойств. Так, наиример, в этих условиях средние коэффициенты активности бромида к лия, нитрата натрия и соляной кислоты одинаковы. Далее было-установлено, что средние коэффициен"Ы активности для очень разбавленных растворов зависят от общей концентрации всех присутствующих электролитов и зарядов их ионов, но не от химической природы электролитов. В связи с этим Льюис и Рендалл ввели понятие ионной силы растворов /, которая определяется как полусумма произведений концентраций понов на квадраты их зарядов  [c.81]

    Если смесь удалена от критической области, то паровая фаза имеет небольшую плотность, т., е. молекулы находятся дальше друг от друга и взаимодействуют реже, чем в жидкой фазе, отличающейся большей плотностью. Поэтому одно из упрощающих предположений заключается в следующем при парожидкостном равновесии все отклонения от идеального поведения относятся к жидкой фазе, а паровая фаза с достаточной точностью может рассматриваться как идеальный газ. Привлекательность этого допущения — в значительном упрощении расчета парожидкостного равновесия действительно, фугитивность /-того компонента в идеальной смеси равна его парциальному давлению, т. е. определяется молярной долей У1 и общим давлением смеси Р. Другое упрощение дает правило Льюиса, согласно которому фугитивность компонента I в паровой смеси пропорциональна его мольной доле, причем коэффициент пропорциональности является фугитивностью паров чистого компонента ( при температуре и давлении смеси. [c.20]

    С появлением электронной вычислительной техники отпала необходимость принятия различных допущений с целью упрощения расчета. При определенных благоприятных условиях допущение об идеальном газе, равно как и применение правила Льюиса, дают хорошее приближение в общем же случае оба подхода ненадежны. [c.20]

    Кричевский [11] показал, что это правило для летучести дает ири высоких давлениях лучшие результаты, чем правило Бартлетта или Льюиса и Рендалла. Однако оно болео сложно в применении, так как требуется определение величины отсекаемых отрезков па графиках. [c.68]


    Правило Льюиса и Рендалла дает хорошее согласие при низких давлениях, но при очень высоких давлениях оно приводит к значительным ошибкам. Например, летучесть этилена [c.73]

    Таким образом, можно принять, что правило Льюиса и Рендалла может быть использовано для определепия летучестей в газовых смесях при умеренных давлениях, а метод приведенных давлений п температур — для определений нри более высоких давлениях. [c.75]

    Величина П(у/) вычисляется в использованием правила Льюиса [c.277]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    До развития квантовомеханических представлений (до 30-х гг. XX в.) в теории связи господствовал метод локализованных электронных пар. классифицирующий связи как ионные, ковалентные и координационные (семиполярные) (В. Коссель, Г. Льюис). Согласно теории Льюиса, элементы образуют связи до заполнения внешней оболочки и образования устойчивого октета электронов. Это правило соблюдается, однако, лишь для элементов периодической системы от бора до фтора. Кремний, фосфор и сера могут иметь на внешней оболочке до 12 электронов (5Р , РС , [c.24]

    Во всех химических теориях, как мы указывали [21], в качество критерия устойчивости химических соединений рассматривались либо ядернаи (например, теория плотных упаковок Вернера, Косселя), либо электронная (теория Льюиса, правило ЭАН и др.) конфигурации. [c.195]

    Осн. область исследований — химия бора. Разработал простые методы синтеза диборана. Открыл (1959) р-цию гидроборирования ненасыщенных орг. соед., заключающуюся в присоединении комплексных боргидридов или диборана по кратным связям (С С, С—О, С=С, =N, =N) с расщеплением связи В—Н и приводящую к образованию органоборанов. Установил пути использования этой р-ции для стереоспецифического гидрирования — присоединения водорода к двойной связи в г г/с-положение, для yi/ -гидратации, избирательного восстановления карбонильной группы и образования новых С—С-связей. Исследуя продукты присоединения триметилбора или диборана к аминам, заложил основы теории колич. метода изучения стерических напряжений в молекуле. Исследуя р-ции присоединения по этиленовой связи, установил, что при участии в них атомов с тетраэдрическими связями переходные комплексы образуются за счет п-электронов. Сформулировал (1953) правило селективности замещения водорода в ароматических соед. в зависимости от кислотности реагента по Льюису (правило селективности Брауна). Чл. Американской акад. искусств и наук (с 1966). [c.68]

    Непосредственное исследование триплетных молекул и их участие в фотохимических процессах стало возможно с появлением метода импульсного фотолиза. Поскольку газы и жидкости, как правило, не фосфоресцируют, что, по мнению Льюиса и Каша, связано с малым временем жизни триплетных молекул, то наблюдение за триплетными молекулами возможно только импульсными методами. В качестве примеров химических реакций, протекающих в триплетном состоянии, следует указать на перенос протона, перепое электрона, отрыв атома водорода и др. Кислотно-основные свойства триплетного состояния органических молекул характеризуются сродством к протону этих молекул. Константа основности триплетных молекул (или рТС) может быть определена по кривой титрования , причем индикатором является молекула в своем триплетном состоянии. Типичная кривая зависимости концентрации триплетных молекул от pH среды приведена на рис. 57 для 9-азафеиантрена. Основность ароматических соединений в триплетном состоянии ие сильно отличается от основности молекул в основном состоянии в противоположность молекулам, находящимся в синглетно-возбужденном состоянии, основность которых существенно отличается от основного состояния. В табл. 15 приведены значения р/С для основного (Sq), первого сииглетпо-возбужденного (S ) и триплетного (Г ) состояний ряда ароматических молекул. Величины р/С (Т) определены ири помощи метода импульсного фотолиза. [c.159]


    Ионной силой, равной 3, обладают ЗМ ЫаС104, 1М СаВгг и 0,5М ЬаСЬ. Льюис и Рендалл сформулировали правило ионной силы в разбавленных растворах коэффициент активности сильного электролита одинаков для всех растворов одной и той же ионной силы. В растворах средних и высоких концентраций это правило не соблюдается. [c.437]

    Теории кислот и оснований Льюиса и Усановича отличаются выбором модели связи между участниками реакции. Кислотно-основные реакции по Льюису осуществляются преимущественно за счет образования и разрыва ковалентной связи, что дает возможность с успехом применять ее в органической химии. Кислотно-основное равновесие гетерополярных соединений, составляющих, как правило, предмет неорганической хи- [c.403]

    Необходимо отметить, что при обычных давлениях, не превышающих 5—Ю атм, ошибки в расчете фазового равновесия мало зависят от коэффициентов фугитивности, и, таким образом, точность вычисления вириальных коэффициентов определяется допустимыми ошибками расчета равновесия. Тем не менее даже при низких давлениях лучше пользоваться приближенными значениями вторых вириальнчх коэффициентов, чем считать газ идеальным или применять правило Льюиса. [c.24]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Правило Льюиса и Рендалла. Наиболее известным является правило Льюиса и Ре1щалла [14], основанное на законе Амага. Закон Амага состоит в том, что объем газовой смеси равен сумме объемов индивидуальных компонентов, взятых под тем н е общим давлением  [c.67]

    Уравнение (3) и выражает правило Льюиса и Рендалла. Основное преимущество этого правила — его простота. Летучесть иидивидуаль-иого компонента является только функцией температуры и общего давления. Наличие других компонентов влияет на летучесть постольку, поскольку эти компоненты определяют общее давление и температуру. Для многих технических приложени давление п температура известны, и значение летучести компонента в смеси может быть получено неиосредстненно из данных по летучести чистого компонента. [c.67]

    Это правило труднее применять, чем правило Льюиса и Рендалла, вследствие того, что в большинстве случаев для оценки Р и Р пользуются методом последовательного приближения. Все же это еще сравнптельпо простое правило, которое легко может быть использовано. [c.67]

    Для каждой температуры и давления использовались различные нравила расчета летучести этилена в смеси но экспериментально определенным составам. Значения Р, V, Т и летучести были взяты из опубликованных графиков [8], понравок к газовым законам и из графиков летучести Льюиса и Кея [15]. В случае правила Бартлетта обычные графики, основаниые нэ [c.72]

    Общий вывод из рассмотрения табл. 4 в основном совпадает с выводом, полученным ранее. Расчеты по правилу Льюиса и Рендалла приводят к большим отклонениям прн высоких давлениях. Правило Бартлетта является более совершенным, но и оно приводит к значительным отклонениям. Методы изометрических отрезков, Кричевского и приведенных давлений и температур дают хорошее согласие с экспс- [c.74]


Смотреть страницы где упоминается термин Льюиса правило: [c.551]    [c.34]    [c.100]    [c.102]    [c.21]    [c.74]    [c.75]    [c.75]    [c.89]    [c.89]    [c.90]   
Химическая термодинамика (1966) -- [ c.161 ]

Курс неорганической химии (1963) -- [ c.341 ]

Курс неорганической химии (1972) -- [ c.305 ]




ПОИСК





Смотрите так же термины и статьи:

Льюис



© 2025 chem21.info Реклама на сайте