Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гейтлер

    Исследование природы химической связи и строения молекул развивалось параллельно с изучением строения атома. К началу двадцатых годов были разработаны основы электронной теории химической связи (Льюис, Коссель, Борн). Квантово-механическая теория ковалентной связи развита Гейтлером и Лондоном (1927). Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. [c.19]


    Количественная теория химической связи развивается в настоящее время на основе выводов и методов квантовой механики. Теория ковалентной связи, предложенная Гейтлером и Лондоном (1927) первоначально для описания молекулы Нг, при дальнейшем развитии получила распространение и на другие случаи ковалентной связи. Она описывает ковалентную связь, рассматривая состояние электронов данной электронной пары с помощью уравнений волновой функции Шредингера. Такое рассмотрение получило название метода валентных схем (ВС) или метода локализованных электронных пар. Можно показать, что при образовании связи с помощью -электронов необходимо, чтобы электро- [c.66]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    Функция Гейтлера — Лондона для молекулы Н2. Работа Гейт-лера и Лондона (1927) была основополагающей в области применения квантовой механики к химии, т. е. в области теории строения молекул. Эти ученые впервые нашли приближенное решение уравнения Шредингера для молекулы Нг, подойдя к ней как к системе, состоящей из двух атомов водорода. Использованная ими приближенная функция для молекулы На строилась из атомных орбиталей 15 каждого атома водорода. В нулевом приближении она имела вид, аналогичный функции для атома гелия (см. 9)  [c.54]

    Развитие взглядов на природу равновесного распределения вещества связано с развитием представлений о природе неидеальности растворов. Современные представления теории распределения близка соприкасаются с теорией неидеальности Ван-Лаара и Гейтлера. Согласно этой теории, химический потенциал -го компонента равен  [c.85]


    Современная теория химической связи, теория строения молекул и кристаллов базируется на квантовой механике молекулы как й атомы, построены из ядер и электронов, и теория химической связи должна учитывать корпускулярно-волновой дуализм микрочастиц. До применения методов квантовой механики к химии не удавалось создать непротиворечивую теорию химической связи. Ее фундамент был заложен в 1927 г. Гейтлером и Лондоном. Выполнив на основе квантовой механики расчет свойств молекулы водорода, они показали, что природа химической связи электрическая, никаких особых сил химического взаимодействия помимо электрических не существует. Действующие в молекуле между ядрами и электронами гравитационные и магнитные силы пренебрежимо малы по сравнению с электрическими. [c.51]

    Учитывая грубость использованного приближения для волновой функции, результаты надо считать вполне удовлетворительными. Значение этой работы чрезвычайно велико. Во-первых, Гейтлер и Лондон показали, что уравнение Шредингера справедливо не только для атома, но и для молекулы, т. е. является фундаментальным. Во-вторых, было показано, что химическая связь имеет электрическую природу, поскольку в уравнении Шредингера в качестве потенциальной энергии рассматривалась только энергия электростатического взаимодействия ядер и электронов [см. уравнение (16.7)], а результаты расчета вполне согласуются с опытом. [c.55]

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]

    Для описания химической связи наиболее широко используются два подхода метод молекулярных орбиталей (МО) и метод валентных связей (ВС). В развитии метода ВС особая заслуга принадлежит В. Гейтлеру и Ф. Лондону, Д. Слетеру и Л. Полингу, в развитии метода МО — Р. Малликену и Ф. Хунду. [c.44]

    Со времени опубликования (1927 г.) предложенного Гейтлером и Лондоном квантовомеханического расчета строения молекулы водорода приближенные методы были существенно улучшены, и в настоящее время экспериментальные и расчетные данные хорошо согласуются между собой. [c.86]

    Теперь, используя метод молекулярных орбиталей, составим волновую функцию молекулы водорода. Для связывающей молекулярной орбитали двух электронов (коэффициент нормирования при этом опускается) запишем функцию грв и по тем же соображениям, что и при решении по Гейтлеру — Лондону, составим произведение [c.87]

    Поскольку эта двухэлектронная функция симметрична, она должна быть, так же как и функция по Гейтлеру — Лондону, умножена на антисимметричную спиновую функцию стд, которая, разумеется, соответствует состоянию двух электронов с противоположными спинами. [c.87]

    При подходе Гейтлера — Лондона такие состояния не рассматриваются. Расчет методом МО дает лучшее согласие с экспериментом, если ионные члены подставить в функцию МО с весом меньше 1. [c.88]

    Далее Гейтлер и Лондон предположили, что найденная ими зависимость волновой функции от координат сохраняется и при сближении атомов водорода. При этом, однако, необходимо уже учитывать и те взаимодействия (между ядрами, между электронами и т. д.), которыми при значительном удалении атомов друг от друга можно было пренебрегать. Эти дополнительные взаимодействия рассматриваются как некоторые поправки ( возмущения ) к исходному состоянию электронов в свободных атомах водорода. [c.102]

    Впервые подобный приближенный расчет был произведен в 1927 г. В. Гейтлером и Ф. Лондоном для молекулы водорода. Эти авторы сначала рассмотрели систему из двух атомов водорода, находящихся на большом расстоянии друг от друга. При этом условии можно учитывать только взаимодействие каждого электрона со смоим ядром, а всеми остальными взаимодействиями (взаимное отталкивание ядер, притяжение каждого электрона к чужому ядру, взаимодействием между электронами) можно пренебречь. Тогда оказывается возможным выразить зависимость волновой фуикции рассматриваемой системы от координат и, тем самым, определить плотность обигего электронного облака в любой точке [c.119]

    В результате Гейтлер и Лондон получили уравнения, позволяющие иайти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния г между ядрами эшх атомов. Г1ри этом оказалось, что результаты расчета зависят от того, одинаковы или нротикопо-ложны по знаку спины взаимодействующих электронов. При совпадающем направлении спинов (рис. 26, кривая а) сближение атомов приводит к непрерывному возрастанию энергии системы. В этом случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически невыгодным и химическая связь между атомами ие возникает. При противоположно направленных спинах (рис. 26, кривая б) сближение атомов до некоторого расстояния го сопровождается уменьшением энергии системы. При г = система обладает наименьшей потенциальной энергией, т. е. находится в наиболее устойчивом состоянии дальнейшее сближение атомов вновь приводит к возрастанию энергии. Но это и означает, что в случае противоположно направленных спинов атомных электронов образуется молекула На — устойчивая система из двух атомов водорода, находящихся на определенном расстоянии друг от друга. [c.120]


    При построении волновой функции электронов молекулы водорода Гейтлер и Лондон взяли за основу волновую функцию электрона в атоме водорода, находящемся в нормальном состоянии — в 15-состдяиии. Эта волновая фуикция оиределяется соотношением [c.76]

    Полученные Гейтлером и Лондоном (и впоследствии уточнен- ные другими исследователями) расчетные значения межъядерного расстояния и знергии связи в молекуле водорода оказались близки к экспериментально найденным величинам. Это означало, что нри ближения, использованные Гейтлером и Лондоном при решении уравнения Шредингера, не вносят суии стеенных ошибок и могун считаться оправданными. Таким образом, исследование Гейтлера и Лондона позволяло сделать вывод, то химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомамДПроцесс спаривания электронов при образовании моле кулы водорода может быть изображен следующей схемой  [c.121]

    При разработке теории строения молекул в начале 30-х годов возникли и затем развивались два метода —метод валентных связей, ВС-метод (разрабатывался Полингом, Слейтером и другими на основе работы Гейтлера и Лондона) и метод молекулярных орбиталей, МО-метод (развивался Малликеном, Гундом, Герцбергом, Хюкке-лем и др.) В высших своих приближениях они приводят к практически одинаковым результатам, достигаемым, однако, разной ценой. В более простом приближении каждый из них обладает преимуществами в описании одних явлений и недостатками при описании других. [c.56]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Физические причины образования связи между атомами удалось установить только после того, как стали известны законы движения микрочастиц — была создана квантовая механика. В 1927 г. (через год после опубликования уравнения Шредингера) появилась работа Гейтлера и Лопдона (Германия), посвященная квантовомеханическому расчету молекулы водорода. Эта работа поло->кила начало применению квантовой механики для решения химических проблем. Так получила развитие новая область науки — квантовая химия, решающая химические проблемы с помощью квантовой механики. Кратко рассмотрим принципы кваи-товохимнческих расчетов.  [c.74]

    Результаты квантовомеханического рассмотрения молекулы водорода по Гейтлеру и Лондону. В молекуле водорода имеется два электрона, движущихся в поле двух ядер. Если обозначить расстояния между частицами, как это сделано на рис. 1.31, то выражение для иотенциальной энергии молекулы водорода следует записать в виде [c.76]

    Гейтлер и Лоидогг предположили, что достаточно хорошим приблил<ением к истинному виду волновой функции для молекулы водорода будет выражение, учитывающее возможности движения электронов, выражаемые обоими соотношениями. Ими была сконструирована волновая функция для электронов в молекуле водорода, являющаяся линейной комбинацией функций (1.46) и (1.47)  [c.77]

    Расчет Гейтлера и Лондона дал количественное объяснение химической связи иа основе квантовой механики. Он показал, что если электроны атомов водорода обладают противоположно направленными спинами, то при сближении атомов происходит значительное уменьшение энергии системы — возникает химическая связь. Образование химической связи обусловлено тем, что при наличии у электронов антипараллельных спинов стано1зится возможным передвижение электронов около обоих ядер, которое иногда не вполне удачно называют обменом электронов . Движение электронов около обоих ядер приводит к значительному увеличению плотности электронного облака в пространстве между ядрами, которое стягивает положительно заряженные ядра. Притяжение уменьшает потенциальную энергию электронов, а следовательно, и потенциальную энергию системы — возникает химическая связь . Следовательно, образование химической связи объясняется понижением потенциальной энергии электронов, обусловленным увеличением плотности электронного облака в пространстве между ядрами. [c.79]

    Каантоиомсхауичсскнй расчет молекулы водорода, выполненный впервые Гейтлером и Лондоном с помощью приближенной функции (1.49), в дальнейшем неоднократно осуществлялся другими авторами, которые использовали более сложные выражения для волновой функции (принимались во внимание деформация электронных оболочек, стремление электронов быть дальше друг от друга и т. д.). В последних работах достигнуто совпадение рассчитанной величины Ео с эксиернмснтальным значением в пределах 0,001%. В расчетах, проводимых с помощью мощных ЭВД, использовали выражения для волновой функции (1.43), содержащие около 100 членов, [c.80]

    Гейтлер и Лондон провели также квантовомеханический расчет энергии взаимодействия молекулы водорода с третьим атомом водорода. Расчет показал, что третий атом ие будет притягиваться, т. е. образова1П1е молекулы Нз невозможно. Так было дано тео()е-тическое обоснование важнейшего свойства ковалентной связи — насыщаемости. Не рассматривая данный расчет, можио пояснить его результат, исходя нз того, что было сказано о молекуле На. Присоединение третьего атома к Нг не происходит, поскольку условием для перекрывания электронных облаков, которое даег имическую связь, является наличие у электронов антипараллель-ных спинов. Спин электрона третьего атома водорода неизбежно будет совпадать по направлению со спином одного из электронов в молекуле. Поэтому между третьим атомом водорода и молекулой водорода будут действовать силы отталкивания, подобные тем, [c.80]

    Валентность элементов на основании представлений Гейтлера и Лондона. Гейтлером и Лондоном было рассмотрено также взаимодействие двух атомов Не. В этой системе невозможно об-разваиие химической связи, так как здесь имеются две пары электронов с одинаковыми спинами. [c.81]

    Согласно представлениям Гейтлера и Лондона, водород способен к образованию молекулы Нг потому, что в его атоме имеется один неспаренный электрон, а гелий не может образовать молекулу Нб2 ввиду того, что оба электрона в атоме Не являются спаренными. Аналогично рассмотрим взаимодействие двух атомов Li. Электронное строение атома лития (ls 2s) (рнс. 1.34) таково, что в этом атоме имеется один неспаренный 25-электрон, поэтому за счет спаривания одиночных s-электронов можно ожидать образования молекулы LI2, аналогичной молекуле Нз. Действительно, молекула, LI2 существует. Энергия связи в молекуле Lis (1,03 эВ) приблизительно в четыре раза меньше энергии связи в молекуле Нг (4,48 эВ). Это обусловлено наличием около ядра лития перв ого электронного слоя, поэтому связь Li —Li значительно более длин-" ная, чем связь Н—Н (267 пм вместо 74 пм в молекуле Нг) кроме того, две пары электронов первого слоя сильно экранируют заряд ядра и отталкипаются друг от друга. Все это приводит к значи- тельному ослаблению связи. [c.81]

    Тогда становится возможным перекрывание электронных облаков (точнее волновых функций) неспареиных электронов, в результата которого между атомами создается зона повышенной электроиной плотности, обусловливающая химическую связь. Очевидно, если в атоме имеется п неспареиных электронов, то этот атом может образовать химические связи с м, другими атомами, имеющими по одному иеспареииому электрону. Поэтому, согласно представлениям Гейтлера и Лондона, валентность элемента равна числу неспаренных электронов, которые имеются в его атоме. Таким образом, квантовомеханические расчеты Гейтлера и Лондона дали теоретическое обоснование предположению о том, что химическая связь обусловлена парой электронов. [c.81]

    Представления Гейтлера и Лондона о механизме образования химической связи оказались чрезвычайно плодотворными и послужили основой для объяснення и приближенного расчета связи в более сложных молекулах. Эти представления легли в основу теории химической связи, получившую название метода валентных связей (сокращенное обозначение ВС). Значительный вклад в [c.83]

    Если в методе Гейтлера и Лондона используют волновую фун-кцщо (1.48), описывающую движение обоих электронов в молекуле Нз, то метод молекулярных орбиталей исходит из волновых функций отдельных электронов. По этому методу находят волновые функции 1-го, 2-го,. .. п-го электронов в молекуле г1)ь ф2,. .., Таким образом, считается, что каждый электрон в молекуле находится на определенной молекулярной орбитали, описываемой соответствующей волновой функцией. Каждой орбитали отвечает определенная энергия. На одной орбитали могут находиться два электрона с противоположно направленными спинами. [c.100]

    Как показали Гейтлер и Лондон, электронная плотность в области между ядрами в молекуле Нг оказывается выше, чем простое наложение электронной плотности атомов. Эта повышенная плотность электронного заряда между ядрами удерживает их вместе, поскольку пребывание двух электронов в поле двух ядер энергетически выгоднее нахождения каждого из них в поле одного ядра. Пара электронов, ставшая общей двум ядрам, обусловливает химическую связь в молекуле. Так как функция (18.1) симметричная, то из принципа Паули следует, что образование молекулы На с такой функцией возможно только, если спины электронов антипараллельны. Полная волновая функция Фмол будет при этом антисимметричной по отношению к перестановке координат электронов. [c.55]

    Метод валентных связей. Представления об образовании молекулы водорода, развитые Гейтлером и Лондоном, были распространены и на более сложные молекулы. На этой основе возникла теория образования химических связей, которая получила название метода валентных связей. Этот метод основан на представлении о том, что атомы в молекуле удерживаются посредством одной или нескольких электронных пар, причем эти связи тем прочнее, чем в большей степени перекрываются электронные облака взаимодействуюших атомов. Обычно большая степень перекрывания электронных облаков наблюдается на прямой, соединяющей центры атомов. Комбинации двухэлектронных двухцентровых связей, которые отражают электронную структуру молекулы, называют валентными схема.ии. [c.47]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Гаттермаи 531, 627, 628,629, 630, 633, 664, 971 Гаффроп 984 Гебель 1037 Гейгер 1071, 1075, 1118 Гейзенберг. 24 Гей-Люссак 18 Гейман 693, 695, 696, 730 Гейтер 329 Гейтлер 24 Гейтс 1115 Гельмгольц 23 Гельферих 447, 451 Генери 998 Генри 15, 116 Гепп 971 Герц 70  [c.1150]

    Итак, мы познакомились с двумя приближенными решениями уравнения Шрёдингера для молекул. Ранее (разд. 6.2.1) было показано, как, исходя из одноэлектронной модели молекулярного иона водорода Нг+, можно построить в некотором роде периодическую систему двухатомных молекул. Для применяемого при этом метода молекулярных орбиталей (МО) характерно заполнение молекулярной (а не атомной) орбитали ф последовательно одним, а затем и двумя электронами. В методе валентных связей (ВС) Гейтлера — Лондона исходят из атомных орбиталей, занятых одним электроном, а далее переходят к двухэлектронной системе (Не или На) путем линейной комбинации занятых атомных орбиталей, в которой учитывается неразличимость электронов. [c.87]


Смотреть страницы где упоминается термин Гейтлер: [c.78]    [c.55]    [c.55]    [c.55]    [c.55]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.36 ]

Основные начала органической химии том 1 (1963) -- [ c.123 ]

Общая химия 1982 (1982) -- [ c.119 , c.121 ]

Общая химия 1986 (1986) -- [ c.113 , c.115 ]

Физическая химия (1961) -- [ c.503 ]

Успехи общей химии (1941) -- [ c.65 , c.80 ]

Общая химия Издание 18 (1976) -- [ c.115 , c.116 ]

Общая химия Издание 22 (1982) -- [ c.119 , c.121 ]

Новые воззрения в органической химии (1960) -- [ c.14 , c.19 , c.23 ]

Курс органической химии (0) -- [ c.24 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.91 ]

Эволюция основных теоретических проблем химии (1971) -- [ c.344 ]

Теоретические основы органической химии Том 2 (1958) -- [ c.178 ]




ПОИСК







© 2025 chem21.info Реклама на сайте