Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические силы

    В отличие от физической адсорбции химическая адсорбция, или хемосорбция, осуществляется при помощи химических сил. Эти виды адсорбции имеют следующие отличительные признаки физическая адсорбция — явление обратимое, и теплота ее составляет всего 8,4—33,5 кДж/моль, в то время как теплота химической адсорбции достигает десятков и сотен кДж/моль. С повышением температуры физическая адсорбция уменьшается, а химическая увеличивается. Объясняется это тем, что химическая адсорбция требует более значительной энергии активации (40—120 кДж/моль). [c.348]


    Межмолекулярное взаимодействие. При изучении свойств различных веществ наряду с внутримолекулярными взаимодействиями, обусловленными действием валентных (химических) сил и характеризующимися насыщенностью, большими энергетическими- эффектами и специфичностью, следует учитывать и взаимодействие между молекулами вещества. При расширении газов, конденсации, адсорбции, растворении и во многих других процессах проявляется действие именно этих сил. Межмолекулярные силы часто называют силами Ван-дер-Ваальса (в честь ученого, который предложил уравнение состояния газа, учитывающее межмолекулярное взаимодействие). [c.135]

    Электростатическое взаимодействие не является единственной причиной гидратации — последняя может обусловливаться и химическими силами. Химическое взаимодействие является преобладающим в случае, если центральная частица — сильный комплексообразователь, т. е. ион с незаполненной электронной оболочкой. Для ионов, обладающих структурой инертного газа, преобладает кулоновая составляющая сил взаимодействия, зависящая от кристаллографического радиуса иона и его заряда [13]. [c.203]

    Взрывчатые вещества используются не только в военном деле. Большинство горных дорог между штатами проложено с помощью химических сил, высвобождаемых при взрыве. [c.522]

    При замыкании цепи на омическое сопротивление (отсутствие противоэлектродвижущей силы) химические силы остаются неуравновешенными и работа тока А равна нулю. Наоборот, если [c.191]

    Обычно указанные виды взаимодействия в разной мере проявляются на различных этапах процесса адсорбции. Так, при адсорбции газов поверхностями твердых тел на начальном этапе процесса в основном участвуют химические силы взаимодействия. Например, поглощение оксида углерода (И) и кислорода активными углями при низком давлении сопровождается образованием химических связей между молекулами адсорбтива и поверхностью адсорбента (см. рис. П.25). При этом выделяется значительное количество теплоты. Кроме того, предполагается и некоторое изменение строения (деформация) молекул адсорбтива (подробнее см. в разд. П1.9). [c.125]

    В рассматриваемом нами случае при коротком замыкании цепи (отсутствие противоэлектродвижущей силы) химические силы остаются неуравновешенными и работа тока А будет равна нулю. Наоборот, если э. д. с. гальванического элемента полностью компенсирована, то будет совершаться максимальная работа. Вот тогда мы получим возможность вычислить АС токообразующего процесса, так как в этом случае будет справедливо равенство (И.5), которое для работы тока примет вид [c.61]


    Очевидно, что в общем случае можно представить себе очень большое число различных форм проведения этого процесса. Работа, например, может производиться не только против силы земного тяготения (поднятие груза) или против давления газа, но и против химических сил, как, например, при разложении какого-нибудь вещества путем электролиза др. [c.189]

    При адсорбции газов это выявляется достаточно отчетливо. При поглощении первых порций газа на чистой поверхности адсорбента часто проявляется действие химических сил. Так, поглощение первых порций кислорода углем и многими металлами сопровождается образованием соединений его с наиболее активными атомами поверхности адсорбента. [c.371]

    Это уравнение показывает, что работа в термодинамическом процессе может быть получена как за счет теплоты, так и за счет изменения внутренней энергии системы при соответствующих условиях. Следует указать, что для обратимого процесса является максимальной работой. Если работа получается за счет химической реакции, протекающей с изменением числа молей смеси, то максимальная работа может включать работу расширения и работу химических сил, которую определяют как химическое сродство, то есть  [c.17]

    При активированной адсорбции молекула удерживается па поверхности валентно-химическими силами. Продолжительность пребывания молекулы на иоверхности катализатора выражается ур и -нением [c.128]

    В процессе адсорбции молекулы газа осаждаются на поверхности твердого тела точно так же, как и при конденсации, а затем удерживаются на ней физическими силами притяжения (силы Лондона— Ван-дер-Ваальса) либо химическими силами (хемосорбция) — в зависимости от химической природы молекулы и поверхности. В некоторых системах могут существовать оба вида адсорбции или промежуточные состояния. [c.156]

    Водородная связь является промежуточной между молекулярными и химическими силами взаимодействия. Эта своеобразная связь устанавливается через водородный атом, имеющий отличительные особенности от всех остальных атомов. Отдавая свой электрон на [c.78]

    Возникновение д. э. с. может быть результатом специфической адсорбции катионов или анионов на поверхности электрода. Под специфической адсорбцией понимается накопление на поверхности электрода катионов или анионов под влиянием химических сил. Анионы, как правило, проявляют большую, по сравнению с катионами, склонность к специфической адсорбции с образованием ка поверхности металлов адсорбционных слоев. Например, гидроксил-ионы, адсорбируясь специфически на поверхностных атомах металла, образуют адсорбционный слой гидроокиси металла сульфид-ионы — адсорбционный слой сульфида металла и т. п. [c.299]

    В то время как Дальтон считал, что химические силы можно изучить только путем исследования химических свойств, Берцелиус развил представления Деви о том, что в основе этих сил лежит кулонов-ское притяжение между различно заряженными частицами, образующими молекулу. Эта электрохимическая теория, возникшая на основе дуалистических представлений о чередовании положительно и отрицательно заряженных атомов и их взаимодействии, получила довольно широкое распространение, особенно в интерпретации реакций электролитов. Однако она оказалась ые в состоянии объяснить явления замещения в органических молекулах, так как отождествление химической связи с электростатическими силами взаимодействия дв.ух точечных зарядов привело к серьезным противоречиям. [c.23]

    Унитарные представления о природе химических сил были развиты Кекуле. Он назвал эти силы насыщаемыми силовыми лучами , которые можно символически обозначать крючками или черточками (Эрленмейер). Каждому атому присуща своя атомность , или валентность, которые указывают на количество его связей устойчивыми являются те молекулы, в которых не осталось неиспользованных валентностей. Характер валентных сил физика того времени еще не могла объяснить, но, тем не менее, с помощью этих представлений уже можно было описывать природу и превращения органических молекул. Едва ли какие-нибудь другие теории в естествознании были столь плодотворны для изучения и систематики колоссального экспериментального материала, как теория валентности Кекуле. Именно поэтому она долгое время находила почти неограниченное применение. [c.23]

    Иногда при адсорбции образуется несколько поверхностных слоев — полимолекулярная адсорбция. Адсорбция может происходить под воздействием разных видов сил физического притяжения, химических сил и др. [c.142]

    Большинство исследователей пришло к выводу, что окись и двуокись углерода являются первичными продуктами окисления углерода при хемосорбции. Установлено, что кислород никогда не может быть десорбирован в чистом виде. Сорбционный механизм взаимодействия кислорода с углеродом может быть представлен следующей приближенной схемой. Атомы кислорода, находящиеся вблизи углеродной поверхности, адсорбируются на поверхности и удерживаются на ней за счет химических сил. При этом происходит более глубокое объединение атомов кислорода и углерода с образованием сложных гипотетических соединений типа С Оу Этот комплекс распадается по истечении некоторого времени с выделением СО и СОз. Стадии протекания этого процесса могут быть представлены следующим образом  [c.143]


    В других случаях катализ происходит вследствие того, что катализатор (гомогенный или гетерогенный) поглощает теплоту реакции, изменяя тем самым частотный множитель /. При этом механизме гетерогенный катализатор обладает преимуществом перед гомогенным, так как способен значительно сильнее рассеивать тепловую энергию. Кроме того, иа гетерогенном катализаторе адсорбция может происходить под влиянием как физических, так и химических сил. [c.19]

    Ход реакции изображает потенциальная кривая, каждая точка которой представляет энергию системы при данной ее конфигурации. Энергии всех заряженных частиц (электронов и ионов) изменяются под действием химических сил и электрического поля, и это определяет отличие потенциального барьера электрохимической реакции от барьера химической реакции. [c.294]

    На более поздних этапах процесса адсорбции (прп высоких давлениях газов) химические силы насыщаются и в действие вступают физические силы (вандерваальсовы). На данном этапе адсорбция напоминает конденсацию газов, которая в силовом поле поверхности адсорбента протекает гораздо легче, чем в его отсутствии. Предполагается, что физическая адсорбция —основная причина полимолекулярности адсорбции при высоких давлениях и концентрациях адсорбтива. Мономолекулярная адсорбция заканчивается при низких давлениях и концентрациях адсорбтива и объясняется насыщением химических сил взаимодействия. [c.125]

    В отдельных случаях химические силы взаимодействия преобладают над физическими настолько, что адсорбция практически полностью протекает под действием первых. В таких случаях ее называют химической адсорбцией или хемосорбцией. [c.125]

    В рассматриваемом случае адсорбция ионов С1 происходит за счет химических сил, приводящих к прочному присоединению их к кристаллу. Оставшиеся в растворе ионы К+ электростатически притягиваются к поверхности и восстанавливают нарушенную электронейтральность системы. [c.64]

    Высшую и последнюю цель всех химических исследований должно составлять развитие химической статики и динамики, учение о равновесии химических сил н дои-жепии материи, [c.3]

    При наличии сильной специфической адсорбции ионов, происходящей под действием химических сил или сил Ван-дер-Ваальса, например адсорбции аниона на поверхности ртутного электрода, общий заряд ионов в плотном слое может оказаться больше заряда поверхности электрода. Такое явление называется перезарядкой поверхности. В этом случае потенциал на расстоянии ионного радуса от поверхности электрода (-ф -потенциал) имеет знак, противоположный знаку разности потенциалов между электродом и раствором. Распределение потенциала в двойном электрическом слое в этом случае схематически представлено на рис. XX, 6. [c.538]

    Здесь А, В и С, О - атомы двух реагирующих молекул, взаимодейст зу-ющих с катализатором, то11Ки и кружки - атомы катализатора. Притяжение катализатора обусловлено химическими силами, под действием которых связи А-В и С-О ослабляются. В результате образуется промежуточная форма М - мультиплетный активный комплекс, который является неустойчивым и стремится перейти в более прочное состояние - исходное (а) или конечное (б). [c.83]

    В процессе адгезии играют роль поверхностные (двумерные) силы, так как в процессе участвует только тонкий приповерхностный слой жидкости. В предложенной нами модели поверхность адгезива (раствор) рассмотрена как двумерный газ полимерных молекул, а процесс адгезии - как изобарное изотермическое расширение поверхностного слоя адгезива в поле вандервальсовых и химических сил субстрата. Допустим, что объем жидкости и двумерный газ на ее поверхности эквивалентны по составу и являются однородными многокомпонентными смесями из N низкомолекулярных компонентов и полимеров. Тогда модель адгезии эквивалентна модели изобары реального двумерного многокомпонентного газа, который существует на поверхности раствора. [c.111]

    С другой стороны, понятие реакционной способности недолжно допускать идеалистической трактовки в том смысле, в каком, например, в биологии свойство жизни или жизнеспособности продолжительное время рассматривалось как результат проявления внешней особой жизненной силы . Понятие о действии химических сил, ассоциируемое с понятием реакционной способности постольку может быть научным и, следовательно, полезным, поскольку эти понятия имеют количествнную меру и мы можем в истолковании этих сил опираться на физические представления о взаимодействии частиц. Реакционная способность частиц является выражением их химического взаимодействия в определенных условиях и количественно измерима. [c.162]

    Между молекулами (атомами, ионами) в жидкости и растворе действуют физические (ван-дер-ваальсовы) и химические силы. Под действием химических сил в растворах образуются соединения разной прочности. Так, например, в классических опытах Д. И. Менделеева по измерению удельного веса растворов спирта в воде было доказано существование в растворе нескольких соединений спирта с водой. [c.203]

    В соврейенной теории растворов признается важность как физических, так и химических сил между молекулами (атомами, ионами) в растворе. [c.204]

    Конденсационно-кристаллизационные структуры, возникающие при иепосредственном контакте частиц дисперсной фазы, как правило, получают из коагуляционных структур прн уменьшении толщины межчастичных слоев и их прорыве. Сначала образуются так называемые точечные (или атомные) контакты между частицами, когда площадь контакта пе превышает площади нескольких атомных ячеек. Связь в этих контактах кроме ван-дер-ваальсовых сил обусловлена также химическими силами. Прочность химических связей можно оценить по следующей формуле  [c.385]

    Влияние наполнителей и других добавок. Наполнители вводят в органические материалы для экономии, а также для придания им механической прочности. Наполнитель может быть инертным, например измельченный камень в асфальте, или он может быть связан физико-химическими силами с органической частью системы, как например при укреплении резиновой смеси сажей. Очевидно, инертный минеральный наполнитель при облучении бр ганичёского материала будет уменьшать действие излучения на систему в целом. Механические свойства минеральных материалов под действием излучения изменяются медленно поэтому наполнитель играет роль инертной структурной части системы. Однако такое простое объяснение может оказаться неверным, поскольку линейный коэффициент поглощения у минеральных наполнителей больше, чем у углеводородов. Более того, важные механические свойства наполненных образцов могут зависеть от чувствительности к облучению углеводородной части, причем действие облучения на углеводородную часть в наполненном образце может оказаться иным, чем в отсутствие наполнителя. [c.163]

    Большую роль в повышении устойчивости глинистых суспензий играет пептизация, представляющая собой процесс дезагрегации дисперсных частиц, обратный коагуляции. В процессе пептизации энергия затрачивается на преодоление межмолекулярных, а не химических сил в отличие от процесса механического измельчения. Пептизация, как мы уже видели, играет большую роль при дис-пергационном приготовлении промывочных жидкостей из глин. [c.79]

    Адсорбция твердыми веществами, по И. Лэнгмюру [17], происходит за счет валентных сил, которыми всегда обладает любая поверхность в силу ее ненасыщенности. Однако за счет химических сил с поверхностью связан лишь первый слой молекул монослой), следующие же слои, образующиеся над поверхностью в виде миниатюрной атмосферы, удерживаются только силами притяжения. Адсорбция монослоем есть, таким образом, явление химическое, и потому она названа хемосорбцией. Поэтому хемосорбция принципиально отличается от обычной, или вандерваальсовой, адсорбции. [c.103]

    При каталитическом крекинге, по С. Н. Обрядчикову, сперва происходит адсорбция веществ с наибольшей физико-химической силой притяжения (смолы, олефины, высокомолекулярные полициклы и т. д.), которые полностью закрывают поверхность катализатора. В начале процесса могут быть стадии десорбции и вытеснения легких молекул более тяжелыми, особенно содержащими непредельные связи. Парафины не адсорбируются. Далее, в результате крекинга и перераспределения водорода, часть углеводородных молекул, становясь все более и более непредельными, уже не могут вытесняться другими молекулами, поэтому десорбция прекращается. В результате дальнейшей отдачи водорода адсорбированные молекулы образуют на катализаторе кокс. [c.320]

    В процессе адгезии играют роль поверхностные (двумерные) силы, так как в процессе участвует только тонкий приповерхностный слой жидкости. В предложенной нами модели поверхность адгезива (раствора) рассмотрена как двумерный газ полимерных молекул, а процесс адгезии - как изобарное изотермическое расширение этого газа в поле вандервальсовых и химических сил субстрата. Предполагается, что при расширении двумерного поверхностного газа заполняются поры и дефекты поверхности субстрата. В дальнейшем этот газ взаимодействует с его активными центрами. [c.11]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Данная работа Уэллера и Милса подтверждает мультиплетную теорию, показывая, что нри гомогенной гидрогенизации молекула водорода тоже связывается химическими силами с двумя атомами. металла в растворе, как это 1-фоисходит, согласно мультиплетной теории, на поверхности твердого катализатора. — Прим. ред. [c.178]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    Способность различных веществ взаимодействовать между собой с образованием новых продуктов именуется химическим сродством. В качестве мерила химического сродства Вант-Гофф предложил использовать максимальную работу химических сил, т. е. изменение свободной энергии F при У = onst или изменение свободной энергии Z при р = onst  [c.232]


Смотреть страницы где упоминается термин Химические силы: [c.192]    [c.639]    [c.42]    [c.535]    [c.24]    [c.47]    [c.19]    [c.23]    [c.49]    [c.15]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.22 , c.23 ]




ПОИСК







© 2025 chem21.info Реклама на сайте