Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные свободные

    Энергия ионизации молекул. В прямой зависимости от характера распределения электронов по связывающим и разрыхляющим молекулярным орбиталям находится также значение энергии ионизации молекул. Как мы видели, в двухатомной молекуле связывающие электроны лежат глубже, чем в атоме, а разрыхляющие — наоборот. Таким образом, энергия ионизации молекулы, верхний занятый энергетический уровень которой является связывающим, выше, чем таковая свободного атома. Например, энергия ионизации молекулы N2 (15,58 эВ) больше энергии ионизации атома азота (14,53 эВ). Если же верхний занятый уровень молекулы является разрыхляющим, то энергия ионизации молекулы меньше, чем атома. Так, энергия ионизации молекулы О 2 (12,08 эВ) меньше энергии ионизации атома кислорода (13,62 эВ). [c.56]


    Рентгеновские лучи, гамма-лучи, поток нейтронов и другие излучения большой энергии также вызывают в веществе глубокие физикохимические изменения и инициируют разнообразные реакции. Так, при действии ионизирующих излучений кислород образует озон алмаз превращается в графит оксиды марганца выделяют кислород из смеси азота и кислорода или воздуха образуются оксиды азота в присутствии кислорода ЗОг переходит в 50з происходит разложение радиолиз) воды, в результате которого образуются молекулярные водород, кислород и перекись водорода. Возникающие при радиолизе свободные радикалы (-Н, -ОН, -НОз) и молекулярные ионы ( НзО , -НзО ) способны вызывать различные химические превращения растворенных в воде веществ. [c.203]

    Поверхность раздела между двумя жидкостями обычно обладает положительной свободной энергией. Межфазное поверхностное натяжение на границе раздела двух жидкостей также положительно. Условием полной смешиваемости жидкостей является выполнение требования, чтобы межфазное натяжение было отрицательным или равным нулю. В таком случае молекулярные силы не будут препятствовать смешению жидкостей, так как каждая из них притягивает молекулы другой с такой же или с большей силой, чем сила, с которой каждая жидкость притягивает свои собственные поверхностные молекулы. В этом случае молекулы свободно перемещаются из одной жидкости в другую. На поверхности раздела жидкость — жидкость молекулы ориентируются таким образом, чтобы энергия их взаимодействия была максимальной [210]. [c.192]

    Таким образом, с точки зрения молекулярной теории положительная свободная поверхностная энергия (т. е. поверхностное натяжение) обусловлена силами притяжения между молекулами, находящимися внутри жидкости и на ее поверхности. Величина поверхностного натяжения определяется межмолеку-лярными силами, геометрией молекул жидкости и числом атомов в них. Кроме того, на нее влияют свободная энергия меж-молекулярных сил, ориентация молекул в поверхностном слое, определяющая направление силовых полей, а при контакте двух жидкостей — еще и присутствие молекул одной жидкости во второй и химическое взаимодействие молекул обеих граничащих жидкостей [211]. [c.186]


    Так как хлорирование хлористым сульфурилом проводится при температуре его кипепия, принимается, что процесс протекает в присутствии свободного молекулярного хлора, постоянным источником которого и является хлористый сульфурил [89]. [c.185]

    Одним из возможных факторов, определяющих высокую склонность асфальтенов к ассоциации и способствующих стабилизации надмолекулярных структур является наличие в них устойчивых свободных радикалов. Наличие свободных радикалов обуславливает явление парамагнетизма, свойственное асфальтенам. Установлено,, что между степенью ароматичности и количеством парамагнитных центров наблюдается прямолинейная зависимость. Концентрация парамагнитных частиц у асфальтенов имеет порядок Ш пмч/г. При средней молекулярной массе асфальтенов около 2000 содержание парамагнитных фрагментов составляющих молекул может достигать до 40% на ассоциат [21]. В смолах их содержание не более 2% от общего числа свободных радикалов, обнаруживаемых в исходном остатке [22]. [c.25]

    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]

    Диффузия в порах будет приближаться к диффузии в газовой фазе, когда средняя длина свободного пробега диффундирующих молекул меньше радиуса пор (при определенных температуре и давлении). В этих условиях большое влияние на диффузию будут оказывать столкновения диффундирующих молекул. Коэффициент диффузии не зависит от радиуса пор, но обратно пропорционален давлению. Поскольку в нормальных условиях величина средней длины свободного пробега молекул имеет порядок 10- см, а под давлением 300 ат —порядок 10 см, в порах с радиусом > 10 см будет преобладать молекулярная диффузия. [c.284]

    Важный вопрос теории рассматриваемого метода исследования - учет роли переноса тепла излучением в среде, полупрозрачной для инфракрасного теплового излучения. Этот вопрос относится к одной из самых серьезных проблем, возникающих при изучении теплопроводности жидкостей. Наличие радиационного переноса тепла путем переизлучения в среде может не только су щественно искажать данные по теплопроводности, но и приводить к нарушению закона Фурье со всеми вытекающими отсюда последствиями. В этих условиях теряет смысл понятие коэффициент теплопроводности, перенос тепла становится зависящим от кон( и-гурации системы, от излуча-тельных свойств поверхностей и т.п. (к этому вопросу мы вернемся в гл. У, 2 при обсуждении данных по теплопроводности углеводородов). Б работе /15, 18/ были проведены расчеты вклада радиационного переноса для плоских температурных волн и показано, что в экспериментах с плоскими зондовыми датчиками измеряемая теплопроводность является чисто молекулярной, свободной от радиационного вклада. В /10/ этот важный вывод был распространен на эксперименты с проволочными датчиками. [c.8]

    В каком состоянии (атомном, молекулярном) свободный водород встречается а) на Земле, б) в космосе Какой другой элемент, помимо водорода, является основной составной частью космической материи  [c.72]

    Основные принципы спектроскопии электронного парамагнитного резонанса (ЭПР) хорошо известны [1—3] она широко применяется для изучения различных катализаторов, включая цеолиты, В настоящее время этим методом исследуются 1) обменные катионы переходных элементов 2) стабильные молекулярные свободные радикалы 3) радикалы, индуцированные излучением, а также 4) ионизация молекул внутри кристаллической структуры и окислительно-восстановительные процессы. [c.419]

    В живых клетках, однако, окисляется не молекулярный свободный водород, а водород, связанный с пиридиновыми коферментами, которые отбирают его от субстратов биологического окисления, т. е. глюкозы, аминокислот, жирных кислот и т. п. О-в потенциал системы НАД/НАД-Нг (см. табл. 13) составляет при pH 7 — 0,32 в. Разность потенциалов между этой системой и системой 7г 0г/0 (о-в + 0,81) составляет 1,13 в. Такому потенциалу соответствует изменение свободной энергии АС° = —52 ккал/моль нуклеотида. Это то количество энергии, которое можно теоретически получить при окислении [c.261]

    М. с., как и низкомолекулярные свободные радикалы, имеют нечетное число электронов, обладающих спиновым моментом, вследствие чего М. с. характеризуются парамагнитными свойствами. Наличие последних дает возможность использовать электронные парамагнитные спектры для идентификации М. с. и изучения их реакций. Реакционноспособность М. с. определяется, в первую очередь, свойствами звена, несущего неспаренный электрон, и не зависит от длины цепи реакционноспособность М. с. не отличается от реакционноспособности подобных низко-молекулярных свободных радикалов. [c.519]


    Выражение для химического потенциала можно записать по-разному в зависимости от выбора стандартного состояния. Например, пренебрегая поправками, связанными с тем, что в формулу должны входить не концентрации, а активности, мы можем написать + Я7"1п(С), где (С) — концентрация в молях на литр. В этом случае стандартное состояние отвечает кониентрации 1 моль иа литр и — парциальная молярная свободная энергия одномолярного раствора неэлектролита С. С другой стороны, если мы напишем + ЯПп х ,, где — это мольная доля О, то стандартное состояние отвечает мольной доле О, равной единице, и — парциальная молекулярная свободная энергия О при единичной мольной доле, т.е. свободная энергия чистого О. Способ выражения через концентрацию О выбирается в зависимости от рассматриваемой задачи. [c.445]

    Диффузия вещества А внутрь частицы сквозь поры. Если диаметр пор велик по сравнению со средней длиной свободного пробега молекул, это будет молекулярная диффузия, а если диаметр пор мал — кнудсеновская диффузия. В последнем случае молекула сталкивается со стенками поры чаще, чем с другими молекулами при каждом столкновении со стенкой она мгновенно адсорбируется (без реакции) и вновь десорбируется под случайным углом. [c.122]

    Скорость молекулярной свободной диффузии математически выражается первым законом Фика [c.76]

    Эта реакция была детально изучена [89] и было критически рассмотрено ранее предложенное объяснение ее механизма. Последние работы приводят к выводу, что реакция хлорирования, вероятно, в значительной части протекает с участием молекулярного хлора и что перекись используется лишь вместо света, в результате чего свободный радикал, образующийся из перекиси, взаимодействует с молекулярным хлором, приводя к атомарному хлору  [c.185]

    Углеводородный компонент такого комплекса имеет высокий молекулярный вес (300 и больше) и на каждую молекулу около двух свободных валентностей, причем на каждую из них приходится по меньшей мере 2 моля хлористого алюминия. Этот комплекс способен растворить еще некоторое количество хлористого алюминия, что в присутствии хлористого водорода еще больше повышает активность катализатора. Во время изомеризации комплекс становится все более ненасыщенным. От углеводородов, связанных в комплексе, водород переходит к олефинам, образующимся в реакции. Тем самым хлористый алюминий в комплексе связывается все прочнее и прочнее, теряя постепенно свою активность. В результате катализатор медленно переходит в неактивное соединив и его необходимо удалять. [c.527]

    Вследствие прочности молекулы N2 многие соединения азота эндо-термичны. Кроме того, энтропия их образования отрицательна (N2 — газ). Отсюда молекулярный азот химически малоактивен, а соединения азота термически малоустойчивы и относительно легко разлагаются прн нагревании. Поэтому азот на Земле находится главным образом в свободном состоянии. [c.345]

    В табл.7.1 приведены данные по свободной энергии образования некоторых углеводородов при различных температурах и стандартном давлении (101325 Па). Видно, что значение А2 для всех углеводородов зависит от молекулярной структуры и существенно возрастает с ростом Их молекулярной массы и повышением температуры (кроме ацетилена). Из этих данных следует вывод о том, что высокомолекулярные углеводороды, обладающие, по сравнению с низкомолекулярными, большим запасом энергии образования А2д,, термически менее стабильны и более склонны к реакциям распада, особенно при высоких температурах термолиза. [c.10]

    При наличии заметных градиентов концентрации компонента с сильно отличной от газовой среды молекулярной массой возникает естественная конвекция за счет разности плотностей и конвекционные токи усиливают перемешивание [8]. Подробнее к этому вопросу мы вернемся в гл. IV при учете свободной конвекции, вызываемой температурными градиентами. [c.89]

    Изучение процесса химического превращения открывает перед исследователями необычайно богатый мир новых фактов и явлений. Если речь идет о сложных химических реакциях, то в ходе процесса осуществляется большое количество разнообразных элементарных и макроскопических стадий, возникает много промежуточных состояний, начиная от сравнительно устойчивых молекулярных продуктов и кончая свободными атомами, радикалами и ионами. [c.5]

    Трудности, встречающиеся нри использовании спектров поглощения для регистрации радикалов, детально обсуждены Ольденбургом [19], который считает основным затруднением малую концентрацию этих активных продуктов. Ольденбургу, однако, удалось применить метод поглощения при изучении радикалов ОН, получающихся при реакции между молекулярным водородом и кислородом. Позднее метод исследования спектров поглощения был развит Портером, который решил проблему создания высоких концентраций свободных радикалов, применив в качестве источника сверхмощный импульсный разряд [20]. При использовании больших энергий оказалось возможным получить нестационарную концентрацию радикалов того же порядка, что и концентрация исходного вещества. [c.96]

    Наряду с совершенствованием топлив, при применении которых энергия выделяется в результате окисления (сгорания), исследователи ряда стран заняты проблелюй использования качественно новых источников энергии для авиационных двигателей. В частности, ведутся работы по использованию энергии свободных радикалов. Свободными радикалами называются осколки молекул — группы aтo юв или отдельные атомы, обладающие свободной валентностью. Известно, что диссоциация (распад) молекул на свободные радикалы происходит, как правило, со значительным поглощением энергии извне. При ассоциации Соединении) свободных радикалов в молекулы эта энергия выделяется. Например, для диссоциации 1 кг молекулярного водорода на атомы Нг->И + Н необходимо-за- [c.94]

    Первый порядок по мономеру и зависимость от корня квадратного из интенсивности света при фотохимической полимеризации были проверены для большого числа систем и при значительном изменении условий опыта. Из экспериментальных значений скорости полимеризации получена эмпирическая константа скорости = кр (2ф a/A ()V2. В таких опытах можно измерить 1а — удельную скорость поглощения света, но измерения ф довольно сложны. Один из методов состоит в использовании инициаторов, таких, как перекись бензола РЬСО — 00 — СОРЬ образующиеся из нее свободные радикалы фенил Рй или бензоил РЬСОО могут быть определены в полученном полимере. В принципе на одну цепь должно приходиться но одному бензольному кольцу, это позволяет подсчитать значение ф. С другой стороны, можно определить средний молекулярный вес образовавшегося мономера и сделать вывод о числе инициированных цеией. Это также дает возможность подсчитать ф. [c.516]

    Реакции на электродах представляют собой обычное окисление (на аноде) и восстановление (на катоде) ионных или молекулярных частиц, присутствующих в растворе. Если реакции на электродах являются обратимыми, то потенциал распада Ев связан уравнением Нернста с изменением свободной энергии реакций  [c.553]

    Это уравпение показы15ает, что предельное значение молекулярной свободной поверхностной эпер1 ии (при Т=0) равно приблизительно 8/3)кТ и что уш становится равным нулю прп температуре, которая примерно па [c.294]

    Это одно из главных проявлений жизни в планетном маснггабе. Молекулярный свободный азот — No сконцентрирован почти целиком в тропосферах воздушной, подводной и подземной. Здесь роль его пассивная с интересующей нас точки зрения. Он разбавляет свободный кислород и делает его безвредным для дыхания и больше того максимально благоприятным для этого. Вероятно, это выработано в эоны геологических лет, эволюционным процессом живого вещества. [c.226]

    Здесь Ах и Ау — относительные ошибки отдельных измерений величин х к у, Аг — относительная ошибка результата вычисления (г) п — фактор, практически свободный от ошибки (такими факторами являются, например, атомные и молекулярные веса, ошибка которых ничтожна по сравнению с другими ошийками). [c.52]

    I ых и свободных л-разрыхляющих молекулярных орбиталей. Как указывалось уанее (см. рис. 54), в молекуле бензола 2р -электроны шести атомов углерода (.бразуют нелокализоаанную л-связь. Согласно теории молекулярных орбиталей этому представлению отвечает возникновение из шести атомных 2р -србиталей шести молекулярных л-орбиталей, три иэ которых оказываются связывающими, три другие — разрыхляющими  [c.520]

    Свободные радикалы при взаимодействии с молекулярным кислородом образуют пероксндные радикалы ROO  [c.33]

    Мы сделали дополнительное приближение, предположив, что число столкновений Z в любой точке не зависит от расстояния между плоскостями d. Это сп 1аведливо, если средняя скорость с> VL d, где Vljd— разность еко]зостей двух слоев газа, находящихся на расстоянии средней длниы свободного пробега. При этих условиях молекулярная плотность каждого слоя постоянна и большинство столкновений н])оисходит между молекулами, которые имеют существенно одно и то же максвелловское распределение. Если это условие пе удовлетворяется, то будут иметься существенные градиенты плотности и температуры и тогда весь анализ не приложим. Эти условия эквивалентны утвер-падению, что скорости движущихся плоскостей малы по сравнению со скоростью звука. [c.159]

    Неоспоримость этих положений, однако, вызывает сомнение, если учитывать сложность взаимодействий, которые имеют место в данном случае. Так, наирршер, чтобы сравнить изменение свободной энергии в ряде подобных реакций и интерпретировать результаты с учетом молекулярного строения, следует выделить все составляющие А °, которые имеют случайный характер. Простейшая из таких составляющих возникает из-за изменений симметрии в ходе реакции. [c.487]

    Такие поправки, связанные с симметрией, представляют собой, однако, лишь первые из возможных поправок. В принципе с точки зрения молекулярных взаимодействий следует считать случайными и несущественными и такие свойству, как молекулярный вес, момент инерции и частота колебаний. Тем не менее эти свойства могут вносить значительный вклад в изменение свободной энергии, и при строгом или по крайней мере неумозрительном обсуждении этого вопроса на молекулярном уровне их следует учитывать. [c.488]

    Анализируя данные по Сз-дегидроциклизации углеводородов на Pt/ , можно констатировать отсутствие каких-либо признаков того, что реакция протекает по схемам ионного или радикального механизмов. Действительно, ионы, например карбениевые ионы, образуются в реакциях с участием кислотно-основных катализаторов, к которым в первую очередь относятся катализаторы реакции Фриделя — Крафтса, цеолиты, оксид алюминия и пр. По-видимому, ни платина, ни ее носитель — березовый активированный уголь — не являются подобными катализаторами кислотного типа, хотя следует учитывать, что природа древесного угля изучена еще недостаточно подробно. Необходимо подчеркнуть, что ка-талиэаты, получаемые в результате Сз-дегидроциклизации на Pt/ , в основном состоят из исходного углеводорода (алкан или алкилбензол) и соответствующего ему циклана. Продукты с более низкой и более высокой молекулярной массой, образование которых, как правило, наблюдается в реакциях, протекающих как по ионному, так и по радикальному механизмам, практически отсутствуют. Следует добавить, что сравнительно мягкие условия реакции Сз-дегидроциклизации (270— 300 °С, атмосферное давление) исключают, по-видимому, возможность возбуждения молекулы исходного углеводорода до состояния свободного радикала или разрыва ее на осколки — радикалы. Таким образом, протекание в присутствии Pt/ Сз-дегидроциклизации по радикальной или по ионной схеме маловероятно. [c.207]

    К числу соединений, реагирующих с гидропероксидами и образующих молекулярные продукты, относятся некоторые амины и аминосульфиды, сульфиды, меркаптаны, дисульфиды, тииль-ные радикалы, алифатические фосфиты и ароматические фосфиты с неэкранированными феноксилами [43, 44]. Наиболее активными ингибиторами окисления из перечисленных сернистых соединений считают сульфиды, у которых атом серы соединен с алифатическими или циклоалифатическими радикалами, — очевидно, благодаря предварительному образованию меркантильного или феноксисульфидного свободных радикалов 45]. [c.44]

    При исследовании влияния условий подземного хранения топлив на их химическую стабильность было также установлено, что склонность этилированных бензинов к смолообразованию в контакте с каменной солью существенно понижается [77]. При изучении этого эффекта на газометрической установке выявлено, что стабилизация этилированного бензина каменной солью наблюдается только при использовании тетраэтилсвинца в виде этиловой жидкости, т. е. в смесн с выноснтелем — алкилгалогенидом. В этом случае стабилизация этилированных бензинов каменной солью может заключаться в рекомбинации находящихся в объеме активных свободных радикалов ТЭС и образу1 щихся в избытке (благодаря гетерогенному инициированию) радикалов алкилгалогенида и углеводородов в стабильные молекулярные продукты по схеме  [c.61]

    Зависимость, приведенная для коэффициента турбулентного обмена, аналогична зависимости для коэффициента молекулярной диффузии D= 3lav, где /о—длина пути свободного пробега молекулы, а и — средняя скорость молекулы. Если I не превосходит глубину фронта пламени в ламинарном потоке бн, то поверхность пламени должна остаться гладкой , однако, как оказалось, и в этом случае наличие турбулентности интенсифицирует обменные процессы. Величина 5н равна примерно 1 мм. Теория рассматривает поверхностное горение турбулентных объемов газа, когда 1<8 , и объемное горение, когда [c.166]

    Эванс, Хиббард и Поуэл [7] изучали спектры поглощения в ближней инфракрасной области (1,10—1,23 и) различных парафиновых и циклопарафиновых углеводородов, содержащих от 13 до 34 углеродных атомов, а также некоторых смазочных масел, освобожденных от ароматических углеводородов адсорбцией. При этом было обнаружено замечательное сходство между спектрами насыщенных (свободных от ароматики) смазочных масел и некоторыми производными циклопентана такого же молекулярного веса. В итоге авторы пришли к выводу о том, что имеется убедительное доказательство того, что насыщенные фракции смазочных масел содержат большое количество циклсшентановых колец . [c.33]

    Шисслер [15] указал, что два углеводорода — 1-циклопеитилген-эйкозан и 3-этилтетракозан — представляют собой интересную пару. Оба они имеют по пяти углеродных атомов на конце прямой цепочки из 21 углеродного атома. В то время как жесткая циклическая группировка из пяти атомов не препятствует образованию комплексов, свободно вращающиеся этильные группы в изопарафине предотвращают образование комплекса с мочевиной у молекул одинакового молекулярного веса. [c.205]


Смотреть страницы где упоминается термин Молекулярные свободные: [c.183]    [c.436]    [c.292]    [c.183]    [c.330]    [c.57]    [c.258]    [c.314]    [c.485]    [c.188]   
Органическая химия Том1 (2004) -- [ c.73 ]




ПОИСК







© 2025 chem21.info Реклама на сайте