Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомы донорные

    Соответствующий атом (донорный) жестких оснований должен обладать высокой электроотрицательностью, низкой поляризуемостью и достаточной устойчивостью к окислению (прочно удерживать свои электроны). [c.174]

    Б этом состоянии атом бора может, следовательно, быть акцептором электронной пары. Действительно, BF3 соединяется по донорно-акцепторному способу с водой, аммиаком и другими веществами известен также комплексный анион BF4. Во всех подобных соединениях ковалентность и координационное число бора равны четырем, а атом бора находится в состоянии гибридизации sp и образует тетраэдрические структуры. [c.631]


    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]

    ЧТО магнитная ось 2 совпадает со связью металл — донорный атом, то останутся только четыре неизвестные, необходимые для определения ориентации молекулы относительно атома металла. В последнем случае системы относятся к числу наипростейших, и их чаще всего и исследуют. Чтобы добиться наилучшего соответствия этих параметров с экспериментальными данными, созданы программы расчета на вычислительных машинах, однако параметры, получаемые в результате подгонки, несмотря на большое количество данных, часто имеют высокие коэффициенты корреляции. [c.195]

    Применяемый нами катализатор, полифталоцианин кобальта, представляет собой макрогетероциклическое соединение, полимер с объемной и линейной структурой, молекула которого состоит из простых мономерных единиц с атомами кобальта в центре каждой мономерной единицы. Как известно [107], при катализе реакции окисления тиолов фталоцианинами металлов, реакционным центром является атом металла, содержащий свободные с1-орбитали и способный образовывать донорно-акцепторную связь. В то же время ДЭГ содержит гетероатомы с неподеленными парами электронов и поэтому обладает способностью координироваться вблизи атомов переходных металлов, т.е. служить лигандами. [c.56]

    Механизм образова-ния водородной связи в значительной степени сводится к донорно-акцепторному взаимодействию (донор электронной пары —атом электроотрицательного элемента. [c.131]


    Стрелка обозначает донорно-акцепторную связь о ее наличии говорит тот факт, что данное вещество не образует аддукта с ВРз, следовательно, атом азота не несет неподеленной электронной пары, (Р С1а.)л — прозрачное эластичное вещество — неорганический каучук . Выдерживает нагревание выше 200 °С. К сожалению, фосфонитрилхлорид сравнительно легко гидролизуется, это затрудняет его практическое использование. Заменой атомов С на органические радикалы можно получить водоустойчивые полимеры на основе фосфонитрилхлорида. [c.422]

    Представления о донорно-акцепторных связях дают возможность объяснить эти соотношения следующим образом. Одним из отличий атома хлора от атома фтора является наличие у первого свободных орбит З -подуровня, которые придают атомам хлора способность служить акцепторами неподеленных электронных пар. В молекуле СЬ между атомами хлора, кроме указанной обычной ковалентной связи, образуются еще две донорно-акцепторные связи, в одной из которых донором служит первый атом хлора, в другой — второй атом хлора (нумерация, разумеется, произвольная) . Молекулу СЬ можно было представить в виде С1. С1. [c.69]

    Внутримолекулярная водородная связь. Наряду с межмолекуляр-ной Н-связью распространена и внутримолекулярная водородная связь. Образование ее возможно при одновременном наличии в молекуле акцепторной группы А—Н и донорной группы, содержащей атом В. Примером может сложить молекула о-нитрофенола [c.140]

    Особым видом ковалентной связи является так называемая координационная, или донорно-акцепторная связь. Координационной называется связь между атомами, один из которых — донор — имеет заполненную внешнюю атомную орбиту (как говорят, имеет неподеленную пару электронов, т. е. пару электронов, не принимающих участия в образовании других химических связей), а второй — акцептор — имеет пустую, не содержащую ни одного электрона, внешнюю атомную орбиту, В молекуле этим двум атом- [c.12]

    Классическим примером молекул с донорно-акцепторной связью являются нитросоединения. Атом азота, имеющий в свободном состоянии три неспаренных электрона и одну неподеленную пару электронов, в нитросоединениях связан одной ковалентной связью с атомом углерода, двумя — с атомом кислорода и донорно-акцепторной связью еще с одним атомом кислорода, который имеет одну незаполненную 2р-орбиту и может выступать в качестве акцептора [c.13]

    Следует особо подчеркнуть, что, хотя образование новой связи происходит за счет пары электронов иона ОН , который, таким образом, выступает в роли донора электронной пары, образуется не донорно-акцепторная, а истинная ковалентная связь. Это связано с тем, что атом углерода не является акцептором и приобретает акцепторные свойства лишь в момент химического превращения, передавая один из своих электронов образующемуся иону Г. Поэтому избыточный электрон, получаемый им от ОН , лишь восстанавливает его исходное состояние четырехвалентного атома. [c.15]

    Предположения сводятся к тому, что экстрагент — донор электронов — тем эффективнее, чем выше электронная плотность на функциональном атоме и чем слабее этот атом связан с остальной частью молекулы, ибо тогда выше его способность образовывать координационную связь. Например, в настоящее время принято, что экстракционная способность фос-форорганических экстрагентов определяется донорными свойствами группы Р=0, т. е. электронной плотностью на атоме кислорода [63]. Установлено наличие корреляции экстракционной способности с полярностью связи Р=0 для ряда фосфорорганических соединений [64], а также с электроотрицательностью групп-заместителей, входящих в состав фосфорорганических соединений, аминов и органических кислот [60, 61]. Ответственной за экстракционную способность, считается энергия связи Р=0, которая определяет длину связи, следовательно, и электронную плотность на атоме кислорода, частоту колебаний Р=0 связи в ИК-спектре и полярность [c.16]

    С другой стороны, при смещении единственного электрона водорода к электроотрицательному атому обнажается очень маленький протон, способный образовать слабую донорно-акцепторную связь с электроотрицательным атомом др уТ ой молекулы. [c.19]

    Число и природа носителей т(жа в полупроводниках в большей степени зависят от их чистоты и характера примесей. Примеси принято делить на донорные и акцепторные, т, е. на отдающие и присоединяющие электроны. Донорные примеси увеличивают число электронов, а акцепторные — число дырок. Этот эффект примесей можно пояснить на примере германия, у которого имеется четыре валентных электрона. Если атом германия в его решетке заменить пятивалентным атомом мышьяка, то один электрон окажется лишним. Для его участия в проводимости необходимо, чтобы энергетический уровень атома примеси был расположен в запрещенной зоне вблизи зоны проводимости (непосредственно у ее нижнего края). Тогда каждый атом примеси будет ионизирован и электроны перейдут в зону проводимости. Число отрицательных носителей тока в полупроводнике с донорной примесью больше, чем число положительных носителей тем ие менее уравнение (5.45) остается справедливым, подобно тому как ионное произведение воды не изменяется при добавлении щелочи. Предположим, что один атом донорной примеси приходится ьа 10 атомов полупроводника. Считая все атомы примеси (иaпp iмep, мышьяка) полностью ионизированными, найдем, что в 1 см германия находится 4,5-10 при- [c.138]


    В этой книге рассматривается химия координационных, или комплексных, соединений [2]. Такие соединения содержат центральный атом или ион (обычно металл) и группу ионов или молекул, окру/кающих его. Для комплекса характерно то, что оп сохраняется как самостоятельная единица даже в растворе, хотя может происходить частичная диссоциация. Комплекс может быть нейтрально частицей или иметь пологкительпый или отрицател1)НЫЙ заряд в зависимости от зарядов центрального атома и координированных групп. Эти группы называют лигандами. Число присоединенных к центральному атому донорных атомов называют координационным числом. Используются такн е и другие названия этих соединений, например комплексные ноны (если имеется электрический заряд), вернеровские комплексы, координационные комплексы или просто комплексы. [c.9]

    Как было показано выше, вклад я-аллильного лиганда в дативное связывание с металлом невелик и устойчивость этих комплексов обусловлена в основном донорно-акцепторным взаимодейст вием [61]. Из всех трех атомов углерода л-аллильного лиганда лишь центральный углеродный атом участвует только в донорно-акцепторном взаимодействии с переходным металлом [83]. Исходя из этого, увеличение электронодонорной силы заместителей в л-аллильных лигандах, особенно у среднего углеродного атома, должно способствовать упрочнению связи л-аллильный лиганд — металл. Относительная реакционная способность 2-алкил-1,3-бута-диенов при взаимодействии с (С407Ы11)2, а также активность аддуктов 1 1 в последующих реакциях присоединения к соответствующему 1,3-диену подтверждают этот вывод. Из кинетических кривых образования аддуктов 1 1 (С4В7Н11)2 с диеновыми углеводородами (рис. 9) видно, что активность диенов увеличивается в ряду  [c.125]

    Мы видим, что у атома азота сохранилась пеподеленпая пара электронов, Тск что здесь азот, выступая в качестве донора элект )0нн0й пары, способен образовать енте одну ковалентную связь по донорно-акце[по и1ому способу. В молекуле НГ 10з акцептором электронной пары атома азота является т )стни атом кислорода, переходящий в возбужденное состояние, в котором он обладает одной свободной 2р-орбиталью  [c.140]

    Как указывалось на стр. 123, такая электронная структура атома кислорода обусловливает большие энергетические затраты на распариваппе его элект )онои, не компеисируемые энергией образования новых ковалентных связей. Поэтому ковалентность кислорода, как иравило, равна двум. Однако в некоторых случаях атом кислорода, обладающий неподеленными электронными парами, может выступать в качестве донора электронов и образовывать дополнительные ковалентн1,1е связн но донорно-акцепторному способу. [c.373]

    Выступая в качестве донора электронной пары, атом азота может участвовать в образовании по донорно-акцепторному способу четвертой ковалентной связи с другими атомами или ионамн, обладающими электронно-акцепторными свойствами. Этим объясняется чрезвычайно характерная для аммиака способность вступать в реакции присоединения. [c.401]

    Образование ковалентной связи может иметь и донорно-акпеп-торный механизм. В этом случае атом-донор предоставляет двух-электрОШюё" облако, а атом-акцептор - свободную орбиталь. Дон но-акцепторные связи, называемые также координационными возни1 1ЮТ, например, при образовании ионов [Ад(ЫНз)21 , [2п(NHз)4] , [СО(ЫНз)д] и др., в которых азот молекулы аммиака, обладая неподеленной электронной парой, выполняет функцию донора, а ионы Н , Ag, и Со — функцию акцептора. [c.47]

    С помощью сдвигающих реагентов в принципе можно определять геометрию молекул в растворе [40]. Этот экспфимент обычно проводится в диапазоне быстрого обмена. Предполагают, что спектральные сдвиги протонного ЯМР, обусловленные СР, имеют по своей природе дипольный характер. В идеальном случае можно задаться структурой молекулы и рассчитать по уравнению (12.22) дипольные сдвиги для большого числа различных ядер исследуемой молекулы. Чтобы добиться соответствия расчетных и эксцфиментальных данных по сдвигу, меняют задаваемую структуру молекулы. Поскольку структура исследуемой молекулы и структура комплекса в растворе, как и величина и положение магнитного диполя металлического центра в комплексе, неизвестны, то в общей сложности система имеет восемь неизвестных. Что это за неизвестные, можно увидеть из рис. 12.10, где показан такой жесткий лиганд, как пиридин, связанный в комплекс с СР. Для определения ориентации молекулы относительно СР нужны четыре параметра 1) г—расстояние между металлом и донором 2) а — угол между связями металл — донорный атом и азот — орто-углерод 3) р—угол между плоскостью лиганда и магнитной плоскостью х, у металла 4) у — угол, характеризующий поворот плоскости молекулы лиганда относительно оси азот — пара-углерод. Кроме того, нужны два угла для определения ориентации магнитной оси относительно связи металл — [c.193]

    Таким образом, мы можем не рассматривать анизотропию % комплекса. (Это возможно, если исключить из рассмотрения протоны хела-тирующего лиганда и заниматься только координированным основанием Льюиса.) Если допустить существование аксиальной симметрии, но считать, что направление связи металл—донорный атом отклоняется от магнитной оси 2, то останется пять неизвестных [46]. Для определения ориентации молекулы относительно металла необходимы еще четыре неизвестных, и одна нужна для определения ориентации магнитной оси 2 относительно связи металл — донорный атом. Если считать. [c.194]

    Как указывалось выше, в соединениях бериллия имеется значительная доля ковалентной связи. Это проявляется в сравнительно небольшой электропроводности нх расплавов (даже ВеРг), в гидролизе сэлей по катиону, в растворимости ряда соединений Вев органических растворителях. В кристаллах, растворах, комплексах (в том числе существующи.х в газовой фазе) атом Ве имеет координационное число 4. С лигандами он образует 4 химические связи, которые близки к ковалентным, две нз иих — донорно-акцепторные. Расположение связей тетраэдрическое, что свидетельствует о 5/5 -гибридизации валентных орбиталей атома Ве. [c.320]

    ВРз и др.). Это объясняется образованием делокализованных донорно-акцеп торных я-связей за счет неподеленной пары атома N н свободных d-орбиталей атома Si. Поэтому трпснлиламин не проявляет тех свойств, которые харак-терны для NH3 и его производных н обусловлены наличием у ато-ма азота неподеленной пары электронов. [c.370]

    В СОСТОЯНИЯХ, когда эта способность развита в сильной степени, атом водорода может настолько интенсивно взаимодействовать с электронами другого атома, что между ними устанавлн-иается довольно прочная связь (с энергией связи 5—7 ккал/моль н больше), которая может хорошо проявляться в спектрах. Однако она все же много слабее обычной химической связи (энергия которой составляет примерно 30—100 ккал/моль). Водородная связь возникает в результате междипольиого взаимодействия двух сильно полярных связей, принадлежащих различным молекулам (или одной и той же молекуле), но она в значительной степени усиливается вследствие взаимной поляризации связей, обусловленной указанными особенностями водородного атома. С другой стороны, деформация молекул, вызываемая образованием водородной связи, в соответствующих случаях способствует образованию донорно-акцепторных связей. [c.83]

    Донорно-акцепторная связь возникает также в ионе гидроксо-ния Н3О+, между донором НаО и акцептором — ионом водорода, где комбинирует свободная орбиталь (1 ) водородного иона (акцептор) с МО неподеленной пары молекулы воды (донор). Все три водорода в Н3О+ совершенно равноценны, т. е. донорно-акцепторная связь в Н3О+ неотличима от ковалентной. Прочность донорно-акцепторной связи может быть велика при образовании Н3О+ из Н+ и НаО выделяется 710 кДж/моль, комплекс ВР3 ЫНз перегоняется без разложения. Донорно-акцепторная связь может возникать и между атомами в кристаллах. Так, в кристалле 1п5Ь атом Тп предоставляет для связи вакантную низкую АО, а атом 5Ь — орбиталь неподеленной пары электронов. [c.89]

    В донорно-сольвентном процессе фирмы Галф" Канада гудрон (> 500 °С) тяжелой или битуминозной нефти смешивается с донором водорода при давлении 3,5-5,6 МПа и подается в трубчатую печь, где нагревается до температуры 410- 460 °С, и далее - в выносной реактор (кокинг-камера), где выдерживается в течение определенного вр ме-ни. Продукты донорно-сольвентного крекинга затем подвергак1тря фракционированию в сепараторе и атмосферной колонне на газ, нафту и средние ди(. гилляты. Последние после гидрирования в специалылом блоке по обычной технологии в присутствии стандартных катализ-ато-ров поступают на рециркуляцию в качестве донора водорода. Остаток атмосферной колонны направляется на вакуумную перегонку с получением вакуумного газойля и остатка. На пилотной установке донорно-сольвентного крекинга гудрона получен следующий выход продуктов, % (мае.) газ - 5,2 нафта - 23,7 атмосферный газойль-7,7 вакуумный газойль - 30 и вакуумный остаток - 33,1. [c.81]

    Соединения, содержащие тяжелые атомы, тушат триплетные состояния, но с существенно меньшей эффективностью, чем синглетные. Различают два эффекта тяжелых атомов внутренний эффект тяжелого атома (тяжелый атом, например атом галогена, находится в возбужденной молекуле) и внешний эффект тяжелого атома (тяжелый атом находится в соединении, добавленном в растворитель). Внутренний эффект тяжелого атома проявляется, например, в дезактивации триплетных молекул антрацена и его дихлор- и дибромпроизводных. При переходе от антрацена к 9,10-ди-хлорантрацену и 9,10-дибромантрацену увеличивается константа скорости дезактивации триплетных состояний от 1,1-10 до 2,3-с-. Внешний эффект тушения триплетных состояний существенно проявляется только при больших концентрациях тушителей и сильно зависит от донорно-акцепторных свойств триплетной молекулы и тушителя. Тушение тяжелыми атомами резко возрастает при образовании комплексов донорно-акцепторного типа между триплетной молекулой и молекулой, содержащей тяжелый атом. Возбужденные донорно-акцепторные комплексы могут распадаться па ион-радикалы в полярных средах. Так, при импульсном фотолизе водного раствора сульфоантрахиионов в присутствии KI наблюдается образование антрасемихинона с максимумом поглощения 520 нм, образующегося в результате реакции переноса электрона  [c.167]

    Атом бора имеет свободную орбиталь, поэтому в молекуле ВНз дефицит электронов. В молекуле же HдN при атоме азота имеется неподеленная (несвязывающая) электронная пара. Таким образом, молекула ВНз может выступать как акцептор, а молекула HзN, наоборот, как донор электронной пары. Иными словами, центральные атомы той и другой молекулы способны к образованию четвертой ковалентной связи по донорно-акцепторному механизму. [c.64]

    Второй атом кислорода 0 присоединнетси к атому серы за счет донорно-акцентор-ного взаимодействия (оно показано стрелкой)  [c.72]

    Согласно Пирсону, жесткость иона обусловлена высокой электроотрицательностью и малым размером, В то же время в мягком основании донорный атом обладает высокой поляризуемостью и ннзкоп электроотрицательностью, а также легко окисляется. Общий критерий жесткости и мягкости кислот и оснований заключается в том, что жесткие кислоты преимущественно взаимодействуют с жесткими основаниями, а мягкие кислоты—с мягкими основаниями [144, 145]. [c.274]


Смотреть страницы где упоминается термин Атомы донорные: [c.68]    [c.92]    [c.515]    [c.551]    [c.132]    [c.379]    [c.407]    [c.587]    [c.610]    [c.635]    [c.195]    [c.327]    [c.169]    [c.138]    [c.66]    [c.67]    [c.321]    [c.319]   
Комплексоны (1970) -- [ c.17 ]

Комплексоны (1970) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

донорные



© 2024 chem21.info Реклама на сайте