Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопы нестабильные

    Строение атома. Атомное ядро. Изотопы. Стабильные и нестабильные ядра. Радиоактивные превращения, деление ядер и ядерный синтез. Уравнение радиоактивного распада. Период полураспада. [c.500]

    А — стабильные изотопы О — нестабильные изотопы [c.410]

    Большинство атомов в кристаллах минералов имеет стабильные ядра, которые, вероятно, не изменились со времени происхождения самих элементов и, несомненно, со времени включения их в состав кристаллической решетки. Каждый элемент, присутствующий в любом образце породы, имеет несколько изотопов. Возможность определения абсолютного возраста образцов изверженной породы основана на том замечательном факте, что некоторые изотопы нестабильны и в результате характерных ядер-ных превращений переходят в стабильные изотопы других химических элементов [10]. Например, один из изотопов калия, постоянно встречающегося в горных породах, претерпевает непрерывное превращение в аргон и кальций согласно следующей схеме [3, 10]  [c.68]


    Изотопы. Существуют ядра с одним и тем же значением I, но с различным значением А, т. е. ядра с различным содержанием нейтронов. Атомы, имеющие одинаковый заряд ядра, но разное количество нейтронов, называются изотопами. Так, символами бС и еС обозначают изотопы углерода. Большинство химических элементов является совокупностями изотопов. Например, природный кислород состоит из изотопов вО (99,76 %), вО (0,04 %) и 0 (0,2 %), природный хлор — из изотопов 7С1 (75,53 %) и /С (24,47 %). Наличие нескольких изотопов у элементов — основная причина дробных значений атомных масс элементов. Наиболее многочисленны изотопы (по 6—10) у элементов с 2 от 40 до 56, т. е. расположенных в середине периодической системы элементов. При этом число устойчивых (стабильных) изотопов меньше числа неустойчивых, т. е. радиоактивных. Элементы, начиная с 84 (полоний) и кончая 92 (уран), состоят только из неустойчивых изотопов. При 2 > 92 изотопы становятся настолько нестабильными, что все тяжелые элементы, начиная с нептуния (93), получены искусственным путем. [c.399]

    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]


    Осколки деления ядер урана, плутония и других радиоактивных элементов тоже оказывают сильное биологическое действие. Фактически это изотопы обычных химических элементов (цезия, бария, стронция, иода и др.), отличающиеся от их стабильных форм атомной массой. Однако эти изотопы нестабильны и, в свою очередь, являются источником Р- и у-лучей, переходя в процессе излучения в другие химические элементы с образованием так называемых дочерних продуктов. Нестабильные элементы этих рядов поступают в различные биологические системы вместе со стабильными изотопами, присутствующими в окружающей среде. [c.112]

    Радиоактивный изотоп. Изотоп, нестабильное ядро которого переходит в стабильное состояние в результате ионизирующей радиации. [c.1017]

    Период полураспада, схема распада и энергия излучения (или вид излучения) для некоторых нестабильных изотопов проведены в табл. 2.1. Различ- [c.30]

    Почти все известные нам элементы имеют несколько изотопов. Многие изотопы не встречаются в природе, однако их можно приготовить искусственно из подходящих изотопов того же или другого элемента. Ядра большинства искусственных и многих природных изотопов нестабильны и склонны к самопроизвольному распаду с выделением различных частиц. Кроме того, при распаде образуется осколочное ядро, которое несколько легче, чем исходное. [c.501]

    При переходе от К к Rb происходит смена строения ядра наиболее стабильного изотопа плеяды. В отличие от калия самый распространенный изотоп у рубидия ( Rb) имеет тип ядра по массе 4п+1 (а не 4п + 3). Изотоп же Rb(4n + 3) имеет слабую радиоактивность — ядра такого типа у элементов второй половины периодической системы нестабильны. [c.9]

    Как правило, среди всех изотопов элемента имеется всего несколько стабильных природных изотопов. Другие изотопы нестабильны и после одного или нескольких распадов превращаются в стабильные. Большинство таких нестабильных радиоизотопов получают искусственно, но некоторые из них имеются в природе, например °К. При распаде радиоизотопы испускают частицы или электромагнитное излучение. [c.185]

    Источниками излучений большой энергии, используемыми в радиационной химии, могут служить отходы, получаемые при работе ядерного реактора. При делении каждого ядра образуются два новых ядра с приблизительно равными массами. Эти продукты образуют группу изотопов с массовыми числами от 72 до 162. Атомы продуктов деления нестабильны в процессе р-распада идет превращение одного химического элемента в другой. В ряде случаев образующееся после испускания Р-частицы ядро находится в возбужденном состоянии переход такого ядра в нормальное или основное состояние сопровождается излучением одного или нескольких у Квантов.  [c.257]

    За последние годы для изучения кинетических характеристик бимолекулярных радикальных реакций был разработан метод конкурирующих реакций без применения меченых атомов (стабильных и нестабильных изотопов) [131, 240, 241]. Изложим этот метод несколько подробнее. [c.182]

    Углеграфитовые материалы и изделия изготавливаются из веществ, основным элементом которых является углерод. Углерод с атомным номером 6 имеет атомный вес 12,011. Он содержит 98,9% изотопа с 1,1% изотопа Природные графиты имеют в своем составе следы радиоактивного изотопа и несколько более нестабильных изотопов. [c.17]

    Известно около 300 стабильных природных изотопов, синтезировано более 1800 нестабильных радиоактивных изотопов известных элементов.  [c.72]

    Изотопы располагаются в одной клетке системы Менделеева химические свойства разных изотопов одного и того же элемента не отличаются, а ядерные меняются существенно. Установлено, что очень стабильны изотопы, имеющие четное число протонов и четное число нейтронов в ядре. Нестабильны ядра атомов нечетных элементов и особенно ядра с нечетным числом протонов Z и нечетным числом нейтронов N. Массовое число изотопа также определяет ядерные свойства каждого изотопа. Хорошим примером могут служить изотопы урана. Как известно, с различием массовых чисел связана дифференциация использования их в ядерной энергетике. [c.72]

    Период полураспада характеризует собой скорость радиоактивного превращения данного нестабильного изотопа и является для него определенной величиной. [c.383]

    Отметим также, что между стабильными и нестабильными изотопами ясной границы нет — она носит условный характер. [c.384]

    В этой реакции ядро азота реагирует с ядром гелия, обладающим значительной кинетической энергией. В результате соударения образуются два новых ядра кислорода Ю и водорода Н. Ядро 0 стабильно, так что данная реакция не приводит к возникновению искусственной радиоактивности. В большинстве же ядерных реакций образуются нестабильные изотопы, которые затем серией радиоактивных превращений переходят в стабильные. [c.582]


    Радиоактивный распад, т. е. превращение атомов нестабильного изотопа в атомы другого элемента с выделением из ядер квантов энергии или частиц, описывается уравнением [c.643]

    В общем, когда число протонов и нейтронов в ядре почти одинаково (т. е. различается на 1 или 2) — изотопы стабильны. По мере того как числа Л/ и 2 становятся менее похожими, изотопы склонны к нестабильности и разрушаются в процессе радиоактивного распада (обычно отдавая тепло) до более устойчивых изотопов. [c.15]

    Все элементы кроме стабильных изотопов имеют также. нестабильные, радиоактивные изотопы, большинство из которых было получено искусственно, поскольку на Земле их либо вообще нет, либо количества настолько малы, что не удается их обнаружить. Лишь некоторые радиоактивные изотопы имеют такой большой период полураспада (время, за которое распа- [c.21]

    Стабильные и нестабильные (радиоактивные) изотопы часто применяются в органической химии. Этими изотопами элемеитоа, в особенности изотопами водорода, углерода, кислорода, азота, фосфора и т. д., пользуются при исследовательских работах в органической и биологической химии для того, чтобы охарактеризовать или, как говорят, отметить (по-английски — label) определенные атомы органических молекул и таким путем с точностью проследить судьбу этих атомов ири химических и биологических превращениях соответствующих веществ. [c.1142]

    Важнейшая особенность нестабильных изотопов— их радиоактивность, под которой понимают самопроизвольное превращение неустойчивого изотопа химического элемента в другой изотоп этого или другого элемента. Различают радиоактивность естественную и искусственную. Первая из них открыта А. Беккерелем (1896), вторая — И. и Ф. Жолио-Кюри (1934). Во многих случаях продукты радиоактивного распад.а сами оказываются радиоактивными, и тогда образованию стабильного изотопа предшествует цепочка из нескольких актов радиоактивного распада. Примерами таких цепочек служат радиоактивные ряды (семейства) природных изотопов тяжелых элементов, которые начинаются у238 у235 Л 232 заканчиваются стабильными изотопами свинца РЬ ° , РЬ ° РЬ2° . Возможны разветвления радиоактивных превращений. [c.51]

    Можно считать, что нейтрон захватывается атомным ядром и дает начало большему ядру с тем же положительным зарядом, являющемуся, следовательно, изотопом того же самого элемента. Это новое ядро в большинстве случаев нестабильно и самопроизвольно распадается, испуская частицу или у-излучение иными словами, оно радиоактивно. Период полураспада активных изотопов, полученных таким путем из различных элементов, изменяется в широком диапазоне во многих случаях изотопы можно идентифицировать на основании этой константы и других признаков. [c.221]

    Седьмой период остался недостроенным, поскольку у элементов с 2 > 83 отсутствуют устойчивые изотопы, причем их нестабильность возрастает с увеличением Z. Таблица, таким образом, заканчивается последним из полученных искусственным путем элементов N5. [c.35]

    Напомним, что радиация в паровой камере возникает при распаде нестабильного, радиоакгинного изотопа, который при распаде превращается в стабильный. Можно ли этот процесс провести в обратном направлении Ответ на этот вопрос вы иа идете в следующем разделе. [c.333]

    Явление радиоактивности. Различные изотопы даже одного и того же элемента могут вести себя во времени далеко не одинаково. В этом отношении различают стабильные (устойчивые) и нестабильные (малоустоР1Чивые — радиоактивные) изоюпы. [c.378]

    В настоящее время для любого элемента искусственно получены радиоактивные изотопы. Поэтому под радиоактивными элементами понимают такие, которые не имеют ни одного стабильного изотопа. Радиоактивные элементы в свою очередь подразделяются на естественные (встречающиеся в природе) и синтезированные, изотопы которых в природе не встречаются. В основном радиоактивными являются тяжелые элементы, расположенные в конце периодической системы после висмута. Висмут является последним стабильным элементом в системе, поскольку у него достигается предельное соотношение числа нейтронов и протонов (Л /2= 126/83 = 1,518), еще обеспечивающее стабильность ядра. У элементов с 2>83 число нейтронов в ядре слишком велико и начинает сказываться нестабильность самого нейтрона. Лишь два элемента — технеций (№ 43) и прометий (№ 61) — не подчиняются этому правилу. И их нестабильность связана с другим обстоятельством (см. ниже). Отсутствие в природе Тс, Рт и всех злементов, расположенных после урана, связа1ю с двумя причинами. Во-первых, их периоды полураспада меньше, чем возраст Земли, и за время существования планеты все их наличное количество успело исчезнуть. Во-вторых, эти элементы не являются членами естественных радиоактивных рядов , поэтому их запас не возобновляется за счет радиоактивного равновесия. [c.427]

    Радиоактивность (от лат. radio — излучаю и a tivus — деятельный) —самопроизвольное превращение неустойчивых (нестабильных) изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц или ядер (напр., гелия). Существует а-распад, -распад, которые часто сопровождаются испусканием у-лучей, спонтанное деление и др. Скорость радиоактивного распада характеризуется периодо.м,полураспада (Т" / ). Наиболее распространенной единицей измерения Р. является кюри. Р. используется в науке, технике и медицине. См. Радиоактивные изотопы, Радиоактивные элементы. Радиоактивные изотопы — неустойчивые, самопроизвольно распадающиеся изотопы химических элементов. При радиоактивном распаде происходит превращение атомов Р. и. в атомы одного или нескольких других элементов. Известны Р. и. всех химических элементов. В природе существует около 50 естественных Р. и. с помощью ядерных реакций получено около 1500 искусственных Р, и. Активность Р. и. определяется числом радиоактивных распадов в данной порции Р. и. в единицу времени (единица активности — кюри). Р. и. характеризуются периодом полураспада (время, в течение которого активность убывает вдвое), типом и энергией (жесткостью) излучения. Р. и. широко используются в науке и технике как радиоактивные индикаторы и как источники излучений. В технике применяются только некоторые из искусственных Р. и.— наиболее дешевые, достаточно долговечные с легко регистрируемым излучением. Наиболее важные области применения — радиационная химия, изучение механизма различных химических процессов, в том числе в доменных и мартеновских печах, износа деталей машин, режущего инструмента, процессов диффузии и самодиффузии и др. В у-дефектоскопии используются Р. и. с у-излученнем для просвечивания изделий и материалов, для выявления внутренних дефектов. [c.110]

    Когда молодая Земля выросла примерно до своей современной массы, она нагрелась, в основном за счет радиоактивного распада нестабильных изотопов (см. вставку 1.1 частично путем улавливания кинетической энергии от столкновений плане-тезималей. В результате такого нагрева расплавились железо и никель (N1), а их высокая плотность позволила им погрузиться в центр планеты, образовав ядро. Последующее охлаждение способствовало затвердеванию оставшегося материала в виде мантии с составом М ре810з (рис. 1.2). [c.17]

    Некоторые твердые вещества коры также реакционноспособны. Урану (U) и калию (К), элементам, часто встречающимся в гранитных породах, свойственна нестабильность из-за их радиоактивности (см. вставку 2.6). Радиоактивный распад изотопов урана с образованием газа радона (Rn) может быть опасным для здоровья людей, живущих в районах с гранитной материнской породой (вставка 3.2). Некоторые минералы стабильны только в определенных условиях температуры и давления. Например, силикаты, образующиеся глубоко в коре при высоких температуре и давлении, становятся неустойчивыми, когда попадают на поверхность земли в процессе выветривания. Минералы приспосабливаются к новым условиям, чтобы вновь приобрести устойчивость. Приспособление может быть быстрым (минуты) для растворимых минералов, например галита (хлорид натрия, Na l), растворенного в воде, или крайне медленным (тысячи или миллионы лет) при выветривании силикатов. [c.70]

    И два нейтрона, а ядро водорода в большинстве случаев — это один-единственный протон. Однако количество нейтронов в ядре может колебаться, и по этой причине каждый элемент известен нам в виде нескольких изотопов, стабильных или нестабильных, то есть склонных к радиоактивному распаду. Выше были перечислены стабильные изотопы водорода, гелия и др>тих элементов — их в земной коре и водах подавляюшее большинство. Но есть и другие изотопы, например, у водорода дейтерий О — в ядре протон и нейтрон, тритий Т — в ядре протон и два нейтрона. [c.25]

    Он все время образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при самопроизвольном (спонтанном) делении ядер урана-238, некоторые — очень немногие — атомы этого изотопа превращаются в атомы урана-239. Эти ядра очень нестабильны, они испускают электроны и тем самым повышают свой заряд. Образуется нептуний — первый трансурановый элемент. Пептуний-239 тоже весьма неустойчив, и его ядра испускают электроны. Всего за 56 часов половина нептуния-239 превращается в плутоний-239, период полураспада которого уже достаточно велик — 24 тыс. лет. [c.397]

    Данные, полученные при помощи изотопов, показывают, что реакции образования окиси этилена и углекислого газа независимы и протекают пара.ллельно. Промежуточными продуктами этих реакций являются нестабильные кислородсодержащие соединения. Альдегиды не могут быть главными промежуточными продуктами образования СО2 и HjO. [c.110]


Смотреть страницы где упоминается термин Изотопы нестабильные: [c.89]    [c.33]    [c.66]    [c.313]    [c.389]    [c.106]    [c.25]    [c.23]    [c.28]    [c.56]    [c.111]    [c.429]    [c.50]    [c.200]   
Физическая и коллоидная химия Издание 3 1963 (1963) -- [ c.17 ]




ПОИСК







© 2025 chem21.info Реклама на сайте