Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород потенциальная энергия

    В простейшем из атомов — атоме водорода — потенциальная энергия электрона определяется его кулоновским притяжением к ядру. Поскольку в атомных единицах заряды электрона и ядра равны —1 и -1-1 соответственно, то [c.50]

    Для электрона в атоме водорода потенциальная энергия опишется функцией [c.428]

    Для основного состояния атома водорода потенциальная энергия равна —е /г, и оператор Гамильтона будет иметь вид [c.140]


    Для электрона в атоме водорода потенциальная энергия описывается функцией J——е /г, где г — расстояние электрона от ядра е — заряд электрона. [c.548]

    Второй член V является потенциальной электронной энергией системы, которая, в противоположность кинетической энергии, формулируется точно так же, как и в классической электростатике. Ее принимают равной нулю, если заряженные частицы бесконечно удалены друг от друга, и поэтому она обязательно отрицательна для любого связанного состояния. Для атома водорода потенциальная энергия равна произведению электронного и ядерного зарядов, деленному на расстояние между ними  [c.14]

    Волновая механика атома водорода. Уравнение Шредингера может быть решено точно для атома водорода. Потенциальная энергия электрона в поле ядра равна V = —(где е — заряд электрона г — расстояние от ядра). [c.496]

    Плоскость рис. 3 перпендикулярна связи С—С и делит ее пополам. Очевидно, что при полном повороте, например, верхней группы СН.1 относительно неподвижной нижней группы СНз из положения а осуществляется три ориентации б и три ориентации а . Так как при ориентациях а атомы водорода двух групп СН3 будут наиболее удалены, а при ориентациях б наиболее сближены, то кривая зависимости потенциальной энергии от угла поворота, начавшись с минимального значения пройдет через три максимума и два минимума (рис. 4). [c.190]

    Если количества ионов НзО и ОН- одинаковы, то число перескоков протонов по схеме Нз0+ + Н20 Н20 + Нз0+будет больше, чем число перескоков по схеме Н2О + НО-ОН + НгО, тах как энергетическое состояние водорода в молекуле воды соответствует более глубокому минимуму потенциальной энергии потенциальной яме), чем в ионе Н3О+. Этим и объясняется меньшая подвижность иона гидроксила. [c.433]

    На рис. 12-2 показано, как зависит от расстояния между двумя атомами Н потенциальная энергия молекулы Нз- Сушествует промежуточное равновесное расстояние, на котором силы притяжения и отталкивания уравновешиваются. Если атомы раздвигаются, силы притяжения сводят их снова. Если же они слишком сближаются, силы отталкивания возвращают их на место. Поведение двух атомов водорода в молекуле Н таково, как если бы они были связаны пружинкой. Наличие положения равновесия как раз и имеется в виду, когда говорят о длине связи (см. рис. 12-1, Э и 12-2). [c.512]

Рис. 22-7. Потенциальная энергия системы из трех атомов водорода при прямолинейном их расположении, а-потенциальная энергия как функция расстояний (г, и Гз) двух крайних атомов от центрального. Линии равной потенциальной энергии на рисунке пронумерованы в килоджоулях на моль. Поверхность потенциальной энергии имеет форму двух глубоких долин, параллельных осям и Гз,-стенки долин круто поднимаются к этим осям и более полого-к плато в верхнем правом углу. Обе долины соединяет путь через перевал, или сед-ловую точку, вершина которой расположена при = Гз = 0,8 А. Расчеты этой трехатомной системы были проведены полуэмпирическими методами в 1935 г. Генри Эйрингом и его сотрудниками. Современные более Рис. 22-7. <a href="/info/953793">Потенциальная энергия системы</a> из трех атомов <a href="/info/1581">водорода</a> при прямолинейном их расположении, а-<a href="/info/6521">потенциальная энергия</a> как функция расстояний (г, и Гз) двух крайних атомов от центрального. Линии <a href="/info/1879578">равной</a> <a href="/info/6521">потенциальной энергии</a> на рисунке пронумерованы в килоджоулях на моль. <a href="/info/9297">Поверхность потенциальной энергии</a> имеет форму двух глубоких <a href="/info/360011">долин</a>, параллельных осям и Гз,-стенки <a href="/info/360011">долин</a> <a href="/info/497466">круто</a> поднимаются к этим осям и более полого-к плато в верхнем правом углу. Обе долины соединяет путь через <a href="/info/1330694">перевал</a>, или сед-ловую точку, вершина которой расположена при = Гз = 0,8 А. Расчеты этой <a href="/info/918478">трехатомной системы</a> были проведены <a href="/info/260979">полуэмпирическими методами</a> в 1935 г. Генри <a href="/info/6589">Эйрингом</a> и его сотрудниками. Современные более

    Пользуясь рис. 22-7, определите потенциальную энергию системы из трех атомов водорода, расположенных на одной прямой на расстоянии 2,0 А друг от друга (в килоджоулях на моль для каждых трех таких атомов). Насколько такое состояние менее устойчиво, чем самая верхняя точка на пути реакции от Н + Н2 до Н2 + Н  [c.395]

    Строение атома водорода. Атом водорода имеет наиболее простое строение в нем есть только один электрон, движущийся в поле ядра. Для такой системы функция потенциальной энергии, [c.20]

    Кинетика этой реакции хорошо изучена. Впервые попытка приближенного расчета поверхности потенциальной энергии этой реакции методом валентных связей была сделана Эйрингом и Поляни. Более точные расчеты в последнее время сделаны методом МО ССП. Расчет показывает, что наиболее вероятной структурой переходного состояния должна быть линейная структура (Н — И — Н) . При этом энергия отталкивания ядер минимальна. Условимся, что элементарная реакция (а) является адиабатической, и реагенты в исходном состоянии находятся в основном электронном состоянии и 1 8. Для удобства обозначим атомы водорода буквами А, В и С. Будем рассматривать взаимодействие между молекулой АВ и атомом С, когда центры атомов находятся на одной прямой. Обозначим расстояние между центрами А и В через п, расстояние между центрами [c.569]

    Вычисление стерических факторов реакций атомов хлора и брома с молекулой водорода на основании расчета поверхности потенциальной энергии для упрощенной модели реакции, в которой энергия активации представляет разность энергий между двумя колебательными уровнями [255], дает 202 [c.202]

    Правильность введения геометрического фактора в представления об активных центрах и поверхностных реакциях подтверждается в первую очередь следующим теоретическим примером. Была исследована потенциальная энергия различных конфигурации из. четырех атомов на частном примере приближения молекулы водорода к двум атомам углерода, находящимся на разном друг от друга расстоянии. [c.111]

    Химическая связь образуется только в том случае, если при сближении атомов (двух или большего числа) полная энергия системы (сумма кинетической и потенциальной энергии) понижается. Важнейшие сведения о строении молекул дает изучение зависимости потенциальной энергии системы от расстояния между составляющими ее атомами. На рис. 22 приведена кри- вая (/) потенциальной энергии для системы из двух атомов водорода. [c.57]

    ГИЯ системы Е. Характер кривой можно объяснить следующим образом. По мере сближения атомов водорода между ними возникают электростатические силы двух типов во-первых,силы притяжения между ядром одного атома и электроном другого во-вторых, силы отталкивания между ядрами и электронами разных атомов. Вначале преобладают силы притяжения, а в дальнейшем силы отталкивания, в результате вначале наблюдается монотонное понижение потенциальной энергии [c.57]

Рис. 22. Изменение потенциальной энергии в системе из двух атомов водорода в зависимости от расстояния между ядрами Рис. 22. <a href="/info/351602">Изменение потенциальной энергии</a> в системе из двух атомов <a href="/info/1581">водорода</a> в зависимости от расстояния между ядрами
    Напомним (ср. гл. I), что барьеры вращения могут быть рассмотрены на примере низкомолекулярных соединений. Для этана СНз—СНз структура имеет, например, вид, изображенный на рис. IV. 7 каждая группа СНз может вращаться вокруг простой связи С—С. Энергетически выгодны три конформации, одна из которых представлена на рис. IV. 7, б. В этих положениях с минимумом потенциальной энергии (Умин атомы водорода двух групп СНз наиболее удалены друг от друга. При повороте группы СНз атомы водорода обеих групп сближаются и для преодоления обменных сил отталкивания необходимо затратить дополнительную энергию, а именно энергию активации. Три потенциальных максимума соответствуют трем конформациям молекулы этана, возможным при полном повороте группы СНз на 360°, когда атомы водорода двух групп СНз находятся на наиболее близком расстоянии, т. е. друг против друга (этим конформациям соответствует максимальная потенциальная энергия Умакс). Разность /.макс и [c.130]

    Попробуем внести ясность в проблему определения энергетического баланса молекулярного иона водорода Нг+. Часто обсуждают вопрос о том, за счет какой энергии электронов образуется химическая связь кинетической или потенциальной Однако такой альтернативы не существует, так как в квантовой механике, так же как и в классической, справедлива так -называемая вириальная теорема, которая утверждает, что при равновесии между средней кинетической энергией Т и средней кулоновской потенциальной энергией V. имеет место следующее соотношение  [c.79]

    В результате были получены уравнения, позволяющие найти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния г между ядрами этих атомов. При этом оказалось, что результаты расчета зависят от того, одинаковы или противоположны по знаку спины взаимодействующих электронов. При совпадающем направлении спинов (рис. 4.1, кривая а) сближение атомов приводит к непрерывному возрастанию энергии системы. В [c.102]


    В несложных соединениях типа нитробензола, в которых не имеет большого значения ван-дер-ваальсово взаимодействие кислородных атомов с орото-атомами водорода, потенциальная энергия Е как функция угла поворота ср может быть приближенно выражена кривой, отвечаюш,ей уравнению  [c.550]

    На рис. 22 приведены возможные уронни энергии Н2 в зависимости от расстояния между ядрами. По оси абсцисс отложено расстояние между ядрами, а по оси ординат — потенциальная энергия системы. Нетрудно догадаться, что основному состоянию молекулярного иона На отвечает наиболее низкий энергетический уровень. Характер нижней кривой на рис. 22 можно объяснить тем, что по мере сближения протона и атома водорода вначале преобладают силы прр тяжения, а затем силы отталкивания, поэтому вначале наблюдаете 1 монотонное понижение потенциальной энергии системы, по достижении же минимума — резкое ее увеличение. Минимум на кри-во потенциальной энергии отвечает наиболее устойчивому состоя- [c.45]

    В форме XII расположение восьми атомов водорода при С-2, С-3, С-5 и С-6 друг относительно друга приблизительно такое же, как в заслоненной конформации этана. По этой причине потенциальная энергия формы XII значительно выше, чем формы XI. Но в форме XII имеется еще одно, особое, взаимодействие между атомами Н при С-1 и С-4. Связи этих атомов неравноценны две из них направлены от кольца (их называют бушпритными и обозначают буквой 6), а две другие направлены навстречу друг другу, хотя и под некоторым углом (их называют флагштоковыми и обозначают буквой /). Атомы й-Н не могут взаимодействовать между собой и слабо взаимодействуют с атомами Н при соседних углеродах, однако взаимодействие двух атомов /-Н очень велико. Действительно, расстояния между центрами двух /-Н атомов ( 0,18 нм) меньше суммы ил ван-дер-ваальсовых радиусов (0,24 нм) поэтому потенциальная энергия формы XII, учитывая все эффекты, должна быть больше, чем у XI на 38—46 кДж/моль. Это объясняет, почему циклогексан состоит практически только из одной формы, а не является смесью XI и XII. [c.39]

    Сказанное выше в большей или меньшей степени относится также к циклопентанам. Стереохимия этих соединений в настоящее время изучена достаточно подробно. Экспериментальное измерение энтропии циклопентана [67], константы Керра [68] и расчетные данные [64] показали, что циклопентановое кольцо не может быть ко-планарным. На моделях хорошо видно, что в плоском кольце цнкло-пентана все 10 атомов Н были бы расположены так же, как в заслоненной конформации этана. Суммарная энергия взаимодействия этих атомов водорода составила бы не менее 58,7 кДж/моль. Чтобы избежать увеличения потенциальной энергии, кольцо изгибается таким образом, что один атом С оказывается выше, а другой ниже плоскости трех остальных атомов С кольца,—конформация полу-кресло . Другая возможная конформация — конверт из плоскости кольца выходит только один атом С. В обоих случаях потенциальная энергия молекулы циклопентана уменьшится на 15 кДж/моль. Согласно еще одной очень распространенной точке зрения [69], место выхода атома углерода из плоскости кольца циклопентана непрерывно перемещается по кольцу, т. е. атомы углерода кольца поочередно выходят из плоскости и затем возвращаются в нее. Такое движение называют псевдоаращением или псевдоротацией. Необходимо, однако, отметить, что эта концепция не бесспорна. Измеренные константы Керра плохо с ней согласуются [68] и отвечают только форме полукресла. Тем не менее, существует веское мнение [70], что сумма всех имеющихся данных говорит все же скорее в пользу псевдовращения. [c.43]

    В результате Гейтлер и Лондон получили уравнения, позволяющие иайти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния г между ядрами эшх атомов. Г1ри этом оказалось, что результаты расчета зависят от того, одинаковы или нротикопо-ложны по знаку спины взаимодействующих электронов. При совпадающем направлении спинов (рис. 26, кривая а) сближение атомов приводит к непрерывному возрастанию энергии системы. В этом случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически невыгодным и химическая связь между атомами ие возникает. При противоположно направленных спинах (рис. 26, кривая б) сближение атомов до некоторого расстояния го сопровождается уменьшением энергии системы. При г = система обладает наименьшей потенциальной энергией, т. е. находится в наиболее устойчивом состоянии дальнейшее сближение атомов вновь приводит к возрастанию энергии. Но это и означает, что в случае противоположно направленных спинов атомных электронов образуется молекула На — устойчивая система из двух атомов водорода, находящихся на определенном расстоянии друг от друга. [c.120]

    Расчет Гейтлера и Лондона дал количественное объяснение химической связи иа основе квантовой механики. Он показал, что если электроны атомов водорода обладают противоположно направленными спинами, то при сближении атомов происходит значительное уменьшение энергии системы — возникает химическая связь. Образование химической связи обусловлено тем, что при наличии у электронов антипараллельных спинов стано1зится возможным передвижение электронов около обоих ядер, которое иногда не вполне удачно называют обменом электронов . Движение электронов около обоих ядер приводит к значительному увеличению плотности электронного облака в пространстве между ядрами, которое стягивает положительно заряженные ядра. Притяжение уменьшает потенциальную энергию электронов, а следовательно, и потенциальную энергию системы — возникает химическая связь . Следовательно, образование химической связи объясняется понижением потенциальной энергии электронов, обусловленным увеличением плотности электронного облака в пространстве между ядрами. [c.79]

    И может быть свободным. Опыт показывает, что при комнатной температуре это движение тормозится. Причина торможения, в основном, — отталкивание, возникающее от перекрывания орбиталей С—Н-связей двух фрагментов СН3 при их поворотах. Если СНз-груп-пы расположены так, как показано на рис. 43,а (шахматная форма), атомы Н максимально удалены друг от друга, их отталкивание минимально (молекула рассматривается вдоль связи С—С). Такое расположение ядер отвечает устойчивой равновесной конфигурации с минимумом потенциальной энергии. При затененной форме расположения (рис. 43, б) атомы И сближены до предела, отталкивание между двумя фрагментами СН3 максимально, и потенциальная энергия достигает наивысшего значения II 1/тах)- Величина Утах называется тормозящим потенциалом внутреннего вращения. Если энергия вращения фрагментов ниже Ушах, они совершают крутильные колебания около положения равновесия. Для молекулы этана тормозящий потенциал составляет всего - 13 кДж/моль и преодолевается легко при повышении температуры. Явление заторможенного внутреннего вращения наблюдается помимо этана в перекиси водорода, в молекулах замещенных углеводородов и многих других молекулах. [c.106]

    Одним из часто используемых полуэмпирических методов построения поверхностей потенциальной энергии является метод LEPS. Первоначально потенциал строился для описания взаимодействия трех атомов водорода. В работе Сато [395] дается следующее выражение для потенциала  [c.55]

    На основе предложенной в [114] схемы метода Монте-Карло были проведены расчеты для реакции рекомбинации Н-ьН-ьН Нг-нНв интервале температур 2000—5000 К. При этих температурах длина волны де Бройля атомов водорода, участвующих в реакции, мала, и их движение можно описывать уравнениями классической механики. Поверхность потенциальной энергии взаимодействия трех атомов водорода достаточно хорошо исследо-аана [372], и, следовательно, в данном случае не было необходимости в процедуре восстановления реакционного потенциала. Исходя из данных работы [159], / о ===2,5 - 10 см. Начальные значения координат и импульсов атомов генерировались в соответствии с формулами (3.66) — (3.71), а затем осуществлялся переход в систему центра масс. Численное интегрирование системы уравнений Гамильтона проводилось на ЭВМ БЭСМ-6 методом Кутта-Мерсона 4-го порядка [324]. Контроль вычислений осуществлялся по сохранению полной энергии и каждой из компонент момента импульса (гамильтониан сохранялся с точностью 0,1%, компоненты момента импульса — 0,01%). Эффективность предложенной схемы метода Монте-Карло составила 20%, т.е. только одна траектория из пяти оказывалась интересной для рассмотрения, эффективность схемы работы [306] (расчет траекторий в фазовом пространстве взаимодействующих атомов) составляла около 11%. [c.102]

    Для атома водорода уже в 1927 г. были получены точные решения уравнения Шрёдингера. Эти решения приводят к понятиям атомной орбитали, квантовых чисел и квантованию энергии, которые являются фундаментальными в современной теории валентности. Атом водорода состоит из электрона и протона. Если г — расстояние между этими частицами, то их потенциальная энергия равна — г. Так как протон значительно тяжелее электрона, при рассмотрении движения электрона в атоме водорода можно считать, что протон покоится и находится в центре масс. Тогда уравнение Шрёдингера для электрона в атоме водорода запишется [c.14]

    Ход изменения потенциальной энергии, наблюдаемый при адсорбции атомов водорода на поверхности металла, можно изобразить схематически одной кривой, показанной на рис. 8. Имеющиеся в настоящее время сведения о силах, обусловливающих образование ковалентной связи, которые были изложены в разделе V, 86, недостаточны для того, чтобы провести расчет этой кривой. Если известна теплота адсорбции и даны некоторые другие величины, то кривая может быть построена в виде так называемой кривой Морзе [55]. Расчет теплоты адсорбции может быть проведен полуэмпирическим путем, предложенным Элеем [56], который для вычисления энергии ковалентной связи между атомами А и В использует уравнение Паулинга [57] [c.52]

    Рассмотрим барьеры вращения на примере низкомолекулярных соединений. Структура этапа СНз—СНз показана на рпс. 4.7. Каждая группа СНз может вращаться вокруг простой связи С—С. Энергетически выгодными являются три конформации, одна из которых представлена на рис. 4.7,6. В этих положениях с минимумом потенциальной энергии Упип атомы водорода двух групп СНз наиболее удалены друг от друга. При повороте группы СНз атомы водорода обоих групп сближаются и для преодоления сил отталкивания необходима затрата дополнительной энергии, так называемой энергии активации. Три потенциальных максимума соответствуют трем конформациям молекулы этана при повороте групп СНз на 360°, когда атомы водорода двух групп СНз находятся на наиболее близком расстоянии, т. е. друг против друга (этим конформациям соответствует максимальная потенциальная энергия /тах). Разность между Игаал И [Утш предстзвляет собой высоту потенциального барьера (энергию активации). Для этана в газообразном состоянии она равна 12 кДж/моль. Этан в обычных условиях — газ. Каждая молекула его практически не взаимодействует с другими и указанное значение потенциального барьера изменяется только в кратковременные моменты соударений. Чтобы получить энергию активации, приходящуюся на одну молекулу, нужно разделить значение указанной выше потенциальной энергии на постоянную Авогадро УУа=6,02- 10-23 моль . [c.91]

    В свободном атоме кислорода электронная конфигурация 2-го от ядра слоя такова 25 , 2рг , 2р/, 2рх при этом плотность заряда 25 пары электронов распределена по сфере около внутренней электронной оболочки, а плотность заряда 2рг , 2ру, 2р электронов распределяется симметрично около взаимно перпендикулярных осей X, у, г. При связывании двух атомов водорода 2ру-, 2рж-орбн-талями угол 90° увеличивается вследствие электростатического отталкивания, и это возмущение приводит к увеличению гибридизации, Валентный угол, соответствующий минимуму потенциальной энергии молекулы, при участии х-электронов в валентном состоянии, проходящий через максимальную электронную плотность, уве- [c.8]


Смотреть страницы где упоминается термин Водород потенциальная энергия: [c.374]    [c.374]    [c.43]    [c.258]    [c.28]    [c.37]    [c.96]    [c.58]    [c.50]    [c.102]   
Биохимия Том 3 (1980) -- [ c.9 , c.10 , c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциальная яма

Энергии с водородом

Энергия потенциальная



© 2025 chem21.info Реклама на сайте