Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин биохимическое

    Тот факт, что а-аминокислоты суть составляющие белков, придает им особое значение. Восемь аминокислот называют незаменимыми , потому что млекопитающие не могут их синтезировать и должны получать вместе с пищей. Это изолейцин, лейцин, лизин, метионин, валин, треонин, фенилаланин и триптофан. Они все обладают ь-конфигурацией, и располагать способом получения таких аминокислот весьма важно. Десять лет назад с этой целью использовали в основном биохимические методы, основанные на разделении рацемических смесей. [c.93]


    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]

    Аминокислоты, которые не синтезируются в результате биохимических превращений в организме (и поэтому организм получает их исключительно с пищей), называются незаменимыми аминокислотами. Для человека это валин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин и триптофан. [c.187]

    Для колоночной хроматографии аминокислот на крахмале, являющейся количественным методом анализа, необходимо было разработать новое лабораторное оборудование. При переходе к хроматографии на ионитах эта аппаратура претерпела дальнейшую модификацию и в настоящее время стала обычной принадлежностью биохимических лабораторий. Хроматографический анализ аминокислот проводят обычно в тех же условиях, что и на аминокислотном анализаторе. Единственное отличие состоит в том, что элюат собирают по фракциям при помощи хроматографического коллектора, а полученные фракции обрабатывают вручную. Если все операции должным образом механизировать, то анализ будет занимать столько же времени, что и на аминокислотном анализаторе. В целом эта процедура является все же более трудоемкой, но в отличие от аминокислотного анализатора здесь нет необходимости добиваться стабильности и согласованности работы всех систем, поскольку весь процесс стандартизован по лейцину. Наконец, что не менее важно, в случае выполнения небольшой серии анализов стоимость одного анализа здесь намного ниже. [c.307]

    Как известно, для синтеза белков и других биохимических реакций организм использует исключительно аминокислоты, а не белки, поступающие с пищей. Некоторые аминокислоты, необходимые для роста и нормального функционирования животных организмов, потребляются готовыми из пиш.н, так как скорость их синтеза отстает от скорости расхода. Такие аминокислоты называются незаменимыми аминокислотами, к ним относятся валив, лейцин, изолейцин, фенилаланин, аргинин, треонин, метионин, лизин, триптофан, гистидин. [c.261]


    Биохимическое расщепление основано на наблюдении Пастера, что грибки или бактерии, растущие в растворах рацемических соединений и питающиеся ими, почти всегда потребляют и разрушают лишь одну из обеих энантиоморфных форм, оставляя другую нетронутой. Таким образом, оказывается возможным выделение последней формы в чистом виде. Например, Peni illium glau um ассимилирует в растворе аммониевой соли d,/-винной кислоты только -форму и оставляет /-форму тот же грибок разрушает /-молочную, /-миндальную и /-аспарагиновую кислоты, а также /-лейцин. По-видимому, для того чтобы определенный микроорганизм мог ассимилировать какое-либо соединение, последнее должно обладать определенной пространственной конфигурацией представляется далее, что один и тот же грибок при одинаковых внешних условиях разрушает оптически активные формы с одинаковой конфигурацией. Однако грибок постепенно можно заставить ассимилировать и второй антипод. [c.135]

    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

    Описано свыше 50 случаев редкого аутосомно-рецессив-ного нарушения (открытого в 1954 г.), при котором моча больного и выдыхаемый им воздух имеют запах кленового сиропа . В моче обнаруживаются высокие концентрации а-кетокислот с разветвленной цепью, образующихся при переаминировании валина, лейцина и изолейцина. Характерный запах бывает обусловлен продуктами распада этих кислот. Биохимический дефект кроется в ферменте, катализирующем окислительное декарбоксилирование кетокислот, как указано на рис. 14-11. [c.116]

    Конформационные переходы происходят при определенны.ч изменениях условий, в которых находится биополимер. В некоторых случаях для него достаточно изменения температуры. Например, из тканей длительно голодавших кроликов наряду с активной выделяется неактивная форма тРНК, присоединяющей лейцин. Такая тРНК при действии фермента, -катализирующего реакцию присоединения лейцина, не способна к этому химическому превращению. Для перевода в активную форму ее необ.чодимо прогреть при определенных значениях pH и ионной силы. Однако наибольшее значепие в биохимических процессах имеют конформационные изменения биополимера, происходящие при присоединении к нему специфического партнера. [c.115]

    Работы по биохимической переработке парафинов были начаты с 1957 г. во Франции. В этих работах было показано, что многие виды микробов живут и активно размножаются в смесях углеводородов в различных условиях в ловушках нефтеперерабатывающих заводов, в резервуарном отстое, в битумных покрытиНх дорог и пр. Были подобраны необходимые культуры бактерий, изучены их параметры роста и найдены оптимальные технические условия брожения углеводородных смесей. На 1 г парафиновых углеводородов получается около 1 г белковых веществ, содержащих все необходимые для питания человека и животных белки примерно с тем же содержанием И аминокислот (лейцин, валин, цистин, лизин, триптофан и др.), которые необходимы для роста организма. [c.28]

    Разделение при помощи биохимических реакций. Некоторые плесени, бактерии и дрожжи нри их произрастании на средах, содержащих рацемические смеси, потребляют или превращают практически полностью только один из антиподов, причем в растворе остается второй антипод. Чернильная плесень — Peni illium glau um, при выращивании на растворе, содержащем ( )-виннокислый аммоний, ассимилирует только (-Ь)-виннокислый аммоний, не затрагивая (—)-виннокислый аммоний (Пастер, 1851 г.). Аналогичным образом чернильная плесень потребляет (—)-молочную, (—)-глицериновую и (—)-миндальную кислоты, а из аминокислот (-(-)-аланин, (—)-лейцин и (—)-аспарагиновую кислоту. Высшие животные ведут себя аналогичным образом по отношению к рацемическим смесям. При введении в кровь морской свинки соли ( )-яблочной кислоты через мочу удаляется только (-1-)-яблочная кислота. [c.131]


    Описанные явления относятся к так называемым молекулярным болезням и намечают новый подход к лечению различных заболеваний, заключаюш,ийся в восстановлении нормального строения уродливых молекул. Показано также, что незначительные изменения строения белковой молекулы приводят к изменению выполняемых ею биохимических функций. Так, например, гормон гипофиза (синтезирован в 1954 г.), вызывающий сокращение мышц матки, и вазопрессин, изменяющий кровяное давление, различаются строением лишь двух аминокислот изолейцин и лейцин оксито-цина заменены в вазопрессине соответственно фенилаланином и аргинином. [c.282]

    В начале нашего столетия Эрлих описал биохимическое расщепление серии аминокислот. Оказалось, что дрожжи в процессе брожения перерабатывают преилпществснно ь-ф< р-мы аминокислот, а их оптические антиподы накапливаются. Таким путем могут быть выделены с выходом 60—/0% оптически чистые D-изомеры аланина, лейцина, валина, изолейцина, изо-валина, серина, фенилаланина, глутаминовой кислоты, гистидина. Однако подобным биохимическим методом удается расщепить не все аминокислоты. Фенилглицин получается лишь с небольшим вращением, а рацематы аспарагиновой кислоты, пролина и тирозина совсем не расщепляются действием бродящих дрожжей. [c.574]

    Особое значение имеют биохимические методы расщепления-основанные на использовании упоминавшегося ул<е ферментативного гидролиза производных окси- и аминокислот. Одну из первых таких работ опубликовал в 1906 г. Вар-бург , установивший, что при действии панкреатина на пропиловый эфир рацемического лейцина гидролизу подвергается только ь-эфир. Таким путем удается получить чистый ь-лейцик. Преимущество использования пропилового эфира (по сравнению с использованием метилового или этилового эфиров) заключается в том, что уменьшается вероятность побочных реакций (нестерео-специфичного неэнзиматического гидролиза и образования дике о-пиперазинов). [c.575]

    Различный характер чувствительности нейронов и глиальных клеток по отношению к К находит свое отражение и в других биохимических процессах. Так же как и в наших опытах, изменение концентрации К" практически не оказало влияния на включение меченого лейцина в белки нейронов, но подавляло этот процесс в клетках глии (Blomslrand, 1971). [c.135]

    Биологическая активность оловоорганических имидов. Оловоорганические соединения общей формулы RsSnX, где X — галоген, ацилокси-группа, неорганический анион и т. д., R —алкил, циклоалкил или фенил, являются активными бактерицидами и фунгицидами. Механизм их действия обсуждался в ряде работ [59—62]. Особенностью N-триорганостаннилимидов является то, что они содержат имидные фрагменты, имеющие общие черты строения с некоторыми метаболитами плесневых грибов и бактерий. Структурные же аналоги метаболитов биохимических процессов могут выступать в качестве биоцидов. Наличие таких фрагментов в структуре оловоорганических соединений может способствовать вовлечению молекулы биоцида в биохимические процессы клетки. Сукцинаты, например, являются важным компонентом процесса аэробного дыхания, а а-изопропилмалеиновая кислота — промежуточным продуктом при биосинтезе аминокислоты лейцина и т. д. [c.28]

    Как уже отмечалось, с начала 50-х годов интерес к биохимическим основам памяти особенно возрос в связи с выяснением роли белков в нейрологической памяти. В многочисленных опытах на крысах и других животных при выработке поведенческих реакций у обученных животных были обнаружены кислые белки, которые характеризовались более интенсивным обновлением, чем те же белки у контрольных животных. Эти белки были выделены цз пирамидальных нервных клеток. В отличие от контрольных, у животных в период тренировки повышалось включение меченых Н-лейцина и С-лпзииа в белкп рибосом, митохондрий и синаптосом, выделенных из коры больших полушарий, мозжечка, зрительного бугра и других отделов ЦНС. Аналогичная картина наблюдалась в белках гиппокампа тренированных животных обнаруживалось повышенное включение по сравнению с контрольными животными. В этой связи высказывалось предположение о том, что формирование промежуточной стадии долговременной пaмдти пJJOи xoдпf [c.248]


Смотреть страницы где упоминается термин Лейцин биохимическое: [c.101]    [c.574]    [c.28]   
Основы стереохимии (1964) -- [ c.574 , c.575 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2024 chem21.info Реклама на сайте