Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колоночная хроматография аминокислот

    Колоночная хроматография аминокислот [c.272]

    Для колоночной хроматографии аминокислот на крахмале, являющейся количественным методом анализа, необходимо было разработать новое лабораторное оборудование. При переходе к хроматографии на ионитах эта аппаратура претерпела дальнейшую модификацию и в настоящее время стала обычной принадлежностью биохимических лабораторий. Хроматографический анализ аминокислот проводят обычно в тех же условиях, что и на аминокислотном анализаторе. Единственное отличие состоит в том, что элюат собирают по фракциям при помощи хроматографического коллектора, а полученные фракции обрабатывают вручную. Если все операции должным образом механизировать, то анализ будет занимать столько же времени, что и на аминокислотном анализаторе. В целом эта процедура является все же более трудоемкой, но в отличие от аминокислотного анализатора здесь нет необходимости добиваться стабильности и согласованности работы всех систем, поскольку весь процесс стандартизован по лейцину. Наконец, что не менее важно, в случае выполнения небольшой серии анализов стоимость одного анализа здесь намного ниже. [c.307]


    ТСХ применяют для разделения и анализа как орг., так и неорг. в-в практически всех неорг. катионов и мн. анионов, в т. ч. близких по св-вам ионов благородных металлов, РЗЭ, а также полимеров, лек. ср-в, пестицидов, аминокислот, липидов, алкалоидов и т. д. С помощью ТСХ удобно анализировать микрообъекты (малые кол-ва в-в), оценивать чистоту препаратов, контролировать технол. процессы и состав сточных вод, изучать поведение разл. ионных форм элементов, предварительно подбирать условия для колоночной хроматографии. [c.609]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    Радиоизотопный анализ производных жирных и желчной кислот, приготовленных с использованием и разделенных методом хроматографии на бумаге, осуществляли путем непосредственного измерения радиоактивности пятен хроматограммы [91, 94, 95] или путем приготовления из бумажной хроматограммы авторадиограммы и последующего измерения интенсивности хроматографических зон с помощью записывающего микрофотометра [92, 93]. Использовали и жидкостные сцинтилляционные счетчики в комбинации с жидкостной колоночной хроматографией [96]. При использовании жидкостного сцинтилляционного счетчика в комбинации с тонкослойной хроматографией чувствительность метода, в котором применяется для определения динитрофенильных производных аминокислот [97], возрастала в сто раз, достигая 1 пМ 98] при воспроизводимости результатов d=6%. Анализируя аналогичным методом смеси кислот известного состава, можно идентифицировать анализируемые кислоты и оценить их количества. Определенным преимуществом диазометана является отсутствие пространственных эффектов при проведении вышеуказанных реакций. [c.154]


    Аминокислоты Аминокислотный анализ (автоматизированная колоночная хроматография) 1 [c.574]

    Во 2-м томе дано практическое применение метода жидкостной колоночной хроматографии для анализа различных классов органических соединений, в частности липидов, стероидов, аминокислот, пептидов, белков. [c.4]

    Хроматография производных аминокислот получила интенсивное развитие в связи с разработкой методов определения первичной структуры белков. Вероятно, трудно найти в органической химии и биохимии более удачный пример столь тесной взаимосвязи развития представлений о структуре и функциях большого класса веществ, каким являются белки, с хроматографическими методами анализа. Основное внимание было направлено на разработку методов определения N-концевых остатков аминокислот в белках, причем в идентификации соответствующих производных большое значение имели тонкослойная (ТСХ) и бумажная хроматография (БХ) (см. обзоры [1, 2]). Газожидкостная и жидкостная колоночная хроматографии находят в этой области ограниченное применение, однако интерес к последнему методу постепенно растет. Интерес к жидкостной хроматографий вызван вполне определенными причинами. Во-первых, постоянно появляются новые методы избирательной модификации остатков аминокислот в белках, а идентификация производных аминокислот требует развития хроматографических методов. Во-вторых, исследованию подвергают все более труднодоступные белки, что в свою очередь вызывает необходимость создания надежных методов количественного анализа. Интерес к колоночной хроматографии возрастает также в связи с выделением и получением необычных аминокислот, а также в связи с необходимостью предотвращения ошибок при определении аминокислотной последовательности. Понятия современный и классический метод используют здесь условно, поскольку новые методики обычно создают на базе стандартной аппаратуры примером может служить автоматический анализ ДНФ- и ДНС-аминокис-лот [3, 4]. Насколько известно, до сих пор не пытались использовать скоростную хроматографию высокого разрешения для разделения производных аминокислот, хотя некоторые соединения, например ДНС-аминокислоты, являются для этого метода довольно удобным объектом. Производные аминокислот использовали в структурном анализе белков крайне неравномерно. По-видимому, всеобщее увлечение ДНФ-аминокислотами проходит окончательно, уступая место повышенному интересу [c.360]

    В то время, когда Тизелиус начал систематическое изучение колоночной хроматографии, Синдж достиг успеха в опытах по выделению ацетилированных аминокислот из белковых гидролизатов путем проводившейся в воронках экстракции из водной фазы в органическую. Мартин и Синдж [21] сконструировали состоявшую из сорока сосудов экстракционную установку разделение ацетилированных аминокислот достигалось благодаря различиям их констант распределения между противоточными фазами — водой и хлороформом (рис. 1.2). Обе фазы перемешивали с помощью вибратора. Однако в том же 1941 г. была опубликована работа, автор которой осуществил аналогичное разделение на колонке, заполненной частицами силикагеля (рис. 1.3)-. Частицы силикагеля могут удерживать значительное количество водной фазы, оставаясь сухими на ощупь и твердыми. Хлороформ (органическая фаза) протекал в колонке между ча- [c.16]

    Колоночную хроматографию, за исключением анализа аминокислот на колонках с ионообменными смолами, использовали главным образом для препаративных целей. [c.8]

    Нейтральные вещества можно отделить от кислот или оснований, фильтруя пробу через ионообменники. Содержащиеся в водных растительных экстрактах алкалоиды можно концентрировать следующим образом. Подкисляя экстракт, сначала получают их сильно гидрофильные соли, затем экстрагируют липофильные компоненты межклеточного вещества органическим растворителем, например хлороформом, далее переводят свободные основания алкалоидов в щелочную форму и экстрагируют их хлороформом. Подобным образом можно повысить содержание липофильных кислот, но при этом кислотную обработку и перевод в щелочную форму проводят в обратном порядке. Для концентрирования ряда соединений можно использовать большинство видов колоночной хроматографии ( (хроматографической фильтрации). При работе с сухим исходным материалом экстракцию обычно ведут в аппарате Сокслета растворителями различной полярности. Например, в результате фильтрации водных растительных экстрактов в колонке, заполненной порошкообразным полиамидом, удерживаются соединения фенольного типа, а другие растворимые в воде соединения, например сахара, аминокислоты и т. п., проходят через колонку. Оставшиеся в колонке соединения можно элюировать мета- [c.87]


    ХРОМАТОГРАФИЯ — метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Хроматографические сорбционные, методы различаются по следующим. признакам по средам, в которых производится разделение (газовая, газожидкостная, жидкостная X.) по механизмам разделения (молекулярная, ионообменная, осадочная и распределительная X.) по технике проведения разделения (колоночная, капиллярная, бумажная и тонкослойная X.), Методами X. анализируют смеси неорганических соединеиий, концентрируют следы элементов. В химической т хнологии X. применяют для очистки и разделения различных веществ, близких по свойствам лантаноидов, актиноидов, аминокислот и др. [c.280]

    Метод хроматографического экстрагирования для разделения смеси ацетилированных аминокислот впервые с успехом был применен А. Мартином и Р. Синджем в 1941 г. и назван ими распределительной хроматографией [97]. Вначале распределительная хроматография была предложена ими в обычном колоночном варианте, а затем в виде так называемой бумажной хроматографии. [c.149]

    До настоящего времени проведены широкие исследования по разделению нескольких типов аминов, в частности катехоламинов и метаболитов триптофана. Разделению этих соединений самыми различными методами посвящено много публикаций. Что касается других аминов, например алифатических аминов, полиаминов и ароматических аминов, то их разделение представляет меньшие трудности, хотя иногда трудно добиться разделения этих аминов на указанные выше типы, так как они имеют близкие хроматографические характеристики. Кроме того, некоторые типы аминов, например триптамин и серотонин, хроматографируются вместе с аминокислотами. Разделение этих типов аминов не приводится ни в настоящей главе, ни в главе по хроматографированию аминокислот. Однако можно получить некоторое представление о разделении этих аминов на основе методов ионообменной, хроматографии, описанных в настоящей главе. Для разделения аминов широко применяются почти все варианты колоночной жидкостной ионообменной хроматографии. Скоростные методы и гель-проникающая хроматография в настоящее время не имеют широкого применения по всей вероятности, классические методы ионообменной хроматографии будут преобладать в области разделения аминов, так как они позволяют получать хорошее и быстрое разделение компонентов. Еще одним важным фактором является возможность использования для этой цели автоматических анализаторов аминокислот. [c.267]

    Количественное определение а-аминокислот возможно титрованием по Сёренсену или же взаимодействием с азотистой кислотой по Ван-Слайку. Различные а-аминокислоты могут быть разделены методами бумажной, тонкослойной хроматографии, колоночной хроматографии на ионообменных смолах, гель-фильтрации или ионофореза. [c.503]

    Фракционирование пептидов Препаративная хроматография с применением летучих буферных растворов Отделение пептидов и аминокислот от мочевины Автоматический колоночный анализ Обессоливание пептидов [c.316]

    Хроматография на бумаге нашла широкое применение в химии почвы, в основном для качественной идентификации компонентов гидролизатов почвы. Это обусловлено тем, что составляющие почву соединения с трудом экстрагируются количественно ввиду их полимерного строения, а также присутствием в почве большого числа веществ, в одинаковой степени растворимых в различных растворителях. Для количественного анализа хроматографию на бумаге чаще всего применяют при определении аминокислот, содержащихся в гидролизатах почвы. Однако этот метод вытесняется колоночной ионообменной хроматографией, являющейся более точным, чувствительным и гибким методом, позволяющим анализировать большие количества веществ. [c.301]

    Цель работы. Ознакомление с методом колоночной ионообменной хроматографии и с одним из приемов регенерации колонок. Отделение аминокислоты от неорганических солей. [c.562]

    Высокая чувствительность метода обратного изотопного разбавления с радиореагентом, а также селективность, которую обеспечивает применение индикаторного изотопа, позволяют определять микроколичества смесей первичных и вторичных аминов. Эти методы широко применяли в определениях различных аминокислот в биологических образцах [85—88]. В работе [86], в частности, описано использование этих методов для оценки содержания одиннадцати таких соединений в 1 мг белка. Метод с пипсилхлоридом применялся для анализа гистамина, причем в этом анализе проводилось четыре цикла перекристаллизации соответствующего производного с целью его очистки до получения постоянного значения удельной радиоактивности. После проведения этого анализа было предложено [89] применять данный метод для определения любого амина, который дает кристаллический замещенный д-иод-бензолсульфамид. Этим же методом оценивались микрограммные количества 2,4-диоксипиримидина и его 5-метильного производного [90]. Для разделения пипсильных производных в дополнение к бумажной хроматографии применялись жидкофазная колоночная хроматография [91] и тонкослойная хроматография [92]. Хроматографию на бумаге применяли также для оценки радиохимической чистоты реагента [93]. [c.310]

    А. В проводимых исследованиях, например при разделении аминокислот, необходимо обеспечить условия (буферный раствор, молярность, pH, температура), близкие к тем, которые применяются при хроматографии на колонке, так как функциональным компонентом, слоя является тот же материал, который используется для колоночной хроматографии, т. е. сильный к1атионообменник. [c.245]

    В некоторых случаях (например, при разделении смеси 16 аминокислот) пластинку Фиксион перед использованием необходимо уравновесить буферным раствором. При уравновешивании, как и при колоночной хроматографии, создается соответствующая ионная среда и удаляются возможные примеси, находящиеся в слое. Буферные растворы следует готовить на деионизованной воде. [c.245]

    Разделение первичных аминов, диаминов и полиаминов на ионообменных колонках с сорбентом типа аминекс с использованием несколько измененной аппаратуры, обычно применяемой для автоматического анализа аминокислот, показало, что жидкостная колоночная хроматография, по-видимому, является в настоящее время наиболее перспективным способом разделения [c.267]

    Созданию современной аналитической хроматографии аминокислот предшествовало два очень важных события — разработка методов получения химически гомогенных белков (школа Норт-ропа, середина 30-х годов [1]) и организация промышленного производства ионообменных смол с последующим развитием ионообменной хроматографии (50-е годы). В промежуточный период были разработаны адсорбционная и распределительная хроматографии аминокислот (на бумаге и на колонках с сорбентами), оказавшиеся, однако, непригодными для решения практических задач. Так колоночная хроматография не нашла применения, главным образом, из-за несовершенства имеющихся в то время сорбентов, в основном природного происхождения. Тем не менее благодаря тщательному подбору условий анализа В. Стейну и С. Муру, лауреатам Нобелевской премии за 1972 г., удалось добиться вполне удовлетворительного разделения смеси аминокислот [2]. Однако этот метод оказался слишком трудоемким и также не нашел широкого применения, поскольку требовалась тщательная стандартизация крахмала, хроматографические свойства которого зависят от источника выделения и метода получения. [c.305]

    Характерно, что Снайдер [22] оценивает ВЭТТ в ТСХ величиной 100 мк, в то время как ВЭТТ для микротонкослойной хроматографии (МТСК) приближается к 5 мк. Это обеспечивает эффективность в МТСХ, например при анализе ДНС-аминокислот, 3 ЭТТ/сек, что соответствует лучшим современным процессам высокоскоростной колоночной хроматографии [22]. (В этой же работе Снайдер оценивает эффективность ТСХ величиной 0,05 ЭТТ/сек.) [c.143]

    ЦИММЕРМАНА РЕАКЦИЯ — цветная реакция о-фталевого альдегида с аминокислотами, проводимая в щелочной среде с последующим подкнсленпем. Реакцию дают глицин, аланин, аспарагин, аргинин, цистин, триптофан и аммонийные соли. Окрашивание варьирует от красного до фиолетового окрашенные продукты, образующиеся из глицина и триптофана и с солями аммонпя, извлекаются хлороформом, продукты реакции др. аминокислот в хлороформ не переходят. Реакция используется для количественного определения глищша, гл. обр. после выделения его из смеси аминокислот бумажной илп колоночной хроматографией, а также для выявления пятен гл1щина на бумажных хроматограммах и обнаружения солей аммония. Предложена В. Циммерманом в 1930. [c.430]

    В качестве реагента для определения конфигурации оптически активных аминосоединений предложен рацемический З-гексадеканоил-4-мето-ксикарбонил-1,3-тиазолидинтион-2 (174). Конфигурацию исследуемого вещества определяют по знаку вращения непрореагировавшего реагента, который отделяют колоночной хроматографией (за ходом разделения легко следить, так как реагент окрашен в желтый цвет). При этом было установлено, что положительное вращение непрореагировавшего реагента наблюдается, если определяемые а-аминокислоты имеют (S)-, а р-амино-спирты и 3-амино-(3-лактамы— (/ )-конфигурацию [24], [c.152]

    Разделению энантиомеров аминокислот методом колоночной хроматографии посвящен обзор Ауберта 141]. Автор отмечает, что в аналитических целях более всего удобны методики, ос нованные на добавлении асимметрического реагента в подвижную фазу. Лефебру и др. [127] удалось полностью разделить аминокислоты, используя пористые гели на основе акриламида с привитыми остатками Ь-а-аминокислот, образующими комплексы с ионами металлов. Авторы [127] рассмотрели влияние структуры геля, кинетики жидкостного обмена, а также природы ионов металла и хирального привитого компонента на хроматографические характеристики энантиомеров аминокислот. [c.59]

    Ароматические и основные аминокислоты на пластинке Фик-сиоц 50 X 8 разделяются при одномерной хроматографии в цитратном буферном растворе pH 5,23 с концентрацией Ыа" 0,35 М (буферный раствор В, табл. 10), который используется в двухколоночной системе аминокислотного анализатора. Типичная хроматография такого разделения представлена на фиг. 49. Колебания pH и концентрации буферного раствора не существенны для фракционирования. Хроматографию проводят при комнатной температуре без предварительного уравновешивания. В камеру наливают слой буферного раствора высотой примерно 1 см. При хроматографии фронт буферного раствора должен подняться на высоту 15 см. Если пластинка не уравновешена, на это уходит около 2 ч. На уравновешенной пластинке (см. буферный раствор для уравновешивания, табл. 10) это происходит за несколько ми-нут. На примере разделения ароматических и основных аминокислот можно оценить Лиз высокую разрешающую спо-Гис обность ионообменной хроматографии в тонком слое по сравнению с соответствующей колоночной техникой. Известно, что на малой колонке в этом же буферном растворе (т. е. 0,35 М Ыа+, pH 5,23) ароматические аминокислоты не отделяются друг от друга. [c.250]

    Впервые метод колоночной распределительной хроматографии был использован Мартином и Сингом (Martin, Synge, 1941) для разделения ацетилированных аминокислот. Носителем неподвижной фазы служил силикагель, в качестве подвижного растворителя авторы применили смесь хлороформа с возрастающей концентрацией /(-бутанола. За разработку метода распределительной хроматографии Мартину и Сингу в 1952 г. была присуждена Нобелевская премия. [c.73]

    Сам метод ионообменной хроматографии создали в США (1944 г.). Метод был применен Э. Расселем с сотрудниками для разделения продуктов ядерного распада. Методы жидкостно-жидкостной (1941 г.) и бумажной (1944 г.) хроматографии для разделения аминокислот разработали английские ученые биохимики А. Мартин и Р. Синт. Методы колоночной и капиллярной газожидкостной хроматографии разработаны А. Мартином совместно с А. Джеймсом (1952 г.). В дальнейшем были предложены методы газотвердофазной хроматографии (Я. Янак, 1953 г.) и гель-проннкаюшей хроматографии (Дж. Порат и Ф. Флодин, 1959 г.). [c.123]


Смотреть страницы где упоминается термин Колоночная хроматография аминокислот: [c.246]    [c.92]    [c.29]    [c.403]    [c.96]    [c.82]    [c.104]    [c.108]    [c.246]    [c.39]    [c.326]    [c.192]    [c.236]   
Смотреть главы в:

Практическая химия белка -> Колоночная хроматография аминокислот




ПОИСК





Смотрите так же термины и статьи:

Хроматография аминокислот

Хроматография колоночная



© 2024 chem21.info Реклама на сайте