Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительное декарбоксилирование кетокислот

    Катаболизм аминокислот с разветвленной цепью лейцина, изолейцина и валина—преимущественно осуществляется не в печени (место распада большинства остальных аминокислот), а в мышечной и жировой тканях, в почках и ткани мозга. Сначала все три аминокислоты подвергаются трансаминированию с а-кетоглутаратом под действием одного общего и специфического фермента—аминотрансферазы аминокислот с разветвленной цепью (КФ 2.6.1.42) (не содержится в печени) с образованием соответствующих а-кетокислот. Последующее окислительное декарбоксилирование а-кетокислот приводит к образованию ацил-КоА-производных. [c.459]


    К. Липоевая кислота и окислительное декарбоксилирование а-кетокислот [c.268]

    Ацетилкоэнзим А присоединяется к карбонильной группе щавелевоуксусной кислоты, давая производное лимонной кислоты, которое гидролизуется до лимонной кислоты с регенерацией КоА. Следующие стадии в основном обратимы, и каждая из них катализируется ферментом. Лимонная кислота дегидратируется до ненасыщенной с-аконито-вой кислоты, которая присоединяет воду иным образом, превращаясь в изолимонную кислоту. После дегидрогенизации получается щавелевоянтарная кислота, которая, будучи р-кетокислотой, легко теряет двуокись углерода, образуя а-кетоглутаровую кислоту. Окислительное декарбоксилирование приводит к образованию янтарной кислоты, и цикл завершается дегидрогенизацией в фумаровую кислоту, присоединением воды (яблочная кислота) и дегидрогенизацией в щавелевоуксусную кислоту. [c.729]

    Биохимические функции. Витамин В, в форме ТПФ является составной частью ферментов, катализирующих реакции прямого и окислительного декарбоксилирования кетокислот. [c.14]

    Метионин включается в белки и как таковой, и в виде N-формилме-тионина в качестве N-концевого остатка бактериальных белков (рис. 14-9, стадии а и б). Как в клетках животных, так и в клетках растений Метионин может лодвергаться переаминированию в соответствую-Щую-кетокислоту (стадия в), но в количественном отношении эта реакция едва ли имеет важное значение. Главный путь превращения метионина связан с его превращением в S-аденозилметионин (SAM, рис. 14-9, стадия г). Эта реакция уже обсуждалась (гл. 11, разд. Б,2) была рассмотрена (гл. 7, разд. В, 2) и функция SAM в процессе трансметилирования (стадия д). Продукт трансмет1у1ирования S-аденозилгомоцис--теин превращается в гомоцистеин путем необычной гидролитической реакции отщепления аденозина (стадия е) >. Гомоцистеин может быть снова превращен в метионин, как показано штриховой линией на рис. 14-9, а также в уравнении (8-85). Другой важный путь метаболизма гомоцистеина связан с превращением в цистеин (рис. 14-9, стадии ж и з). Эта последовательность реакций обсуждается в разд. Ж- ДрУ гим продуктом на этом пути является а-кетобутират, который доступен окислительному декарбоксилированию с образованием пропионил-СоЛ и его дальнейшим метаболизмом или может превращаться в изолейцин (рис. 14-10). [c.111]


    ФМН и ФАО), участвующие в окислительно-восстановительных процессах, в окислении жирных кислот, в окислительном декарбоксилировании кетокислот. Главным источником рибофлавина являются молочные продукты, яйца, печень и почки, дрожжи, гречка. [c.276]

    Реакционноспособным участком молекулы КоА в биохимических реакциях является 8Н-группа, поэтому принято сокращенное обозначение КоА в виде 8Н-КоА. О важнейшем значении КоА в обмене веществ (как будет показано далее—см. главы 9—11) свидетельствуют обязательное непосредственное участие его в основных биохимических процессах, окисление и биосинтез высших жирных кислот, окислительное декарбоксилирование а-кетокислот (пируват, а-кетоглутарат), биосинтез нейтральных жиров, фосфолипидов, стероидных гормонов, гема гемоглобина, ацетилхолина, гиппуровой кислоты и др. [c.237]

    Участвует в обмене веществ в качестве кофермента особенно важную роль играет в окислительном декарбоксилировании кетокислот, а также в пентозофосфатном пути окисления глюкозы снижает в организме содержание молочной и пировиноградной кислот, улучшает усвоение глюкозы, трофику нервной ткани [c.290]

    Второй углерод, отщепляемый от цитрата, также уходит в форме СОг В результате окислительного декарбоксилирования а-кетокислоты, кетоглутарата (а-оксоглутарат, гл. 8, разд. К, 2). Чтобы завершить цикл, остается перевести четырехуглеродную сукцинильную группу сукцинил-СоА снова в оксалоацетат. Это осуществляется в результате двух стадий окисления. Сначала происходит превращение сукци-нил-СоА в свободный сукцинат (стадия е), а затем проходят реакции -окисления (стадии ж — и на рис. 9-2, см. также рис. 9-1). На стадиях д VI е происходит субстратное фосфорилирование (последовательность реакции S7B, рис. 8-19) [15]. Сукцинил-СоА представляет собой высокоэнергетический неустойчивый тиоэфир если бы стадия е сводилась к простому гидролизу тиоэфира, это означало бы бесполезную потерю энергии. Поэтому расщепление тиоэфира идет сопряженно с синтезом АТР (у соИ и высших растений) или GTP (у млекопитающих). Некоторое количество сукцинил-СоА, образовавшегося в митохондриях, используется иным путем, например так, как показано в уравнении (9-8). [c.319]

    Кофактор окислительного декарбоксилирования а-кетокислот тиаминпирофосфат легко образуется у животных и человека из тиамина (85) [c.155]

    Оценка обеспеченности организма тиамином. С этой целью обычно определяют содержание витамина и/или его коферментов в эритроцитах крови. Поскольку при недостатке витамина В нарушается окислительное декарбоксилирование кетокислот, увеличение содержания в крови и моче пировинограднои и а-кетоглутаровои кислот будет свидетельствовать о недостатке тиамина в организме. Однако следует иметь в виду, что накопление пирувата отмечается не только при ги- [c.19]

    Дпя завершающей стадии окислительного декарбоксилирования а-кетокислот необходима липоевая кислота, которую иногда называют витамином N. [c.155]

    Окислительное декарбоксилирование кетокислот — пировиноград-ной (при этом образуется ацетил-КоА) и а-кетоглутаровой (при [c.25]

    Неферментативное окислительное декарбоксилирование а-кетокислот перекисью водорода является хорошо изученной реакцией. Первая стадия состоит, видимо, в образовании аддукта — органической перекиси, которая распадается согласно уравнению (8-67)  [c.273]

    Окислительное декарбоксилирование а-кетокислот [c.300]

    Напишите формулу липоевой кислоты и поясните связывание этого соединения с белками. Покажите точно, каким образом это соединение участвует в окислительном декарбоксилировании а-кетокислот. [c.300]

    Более сложной представляется роль тиаминдифосфата в окислительном декарбоксилировании а-кетокислот. В этом случае в состав полиферментной системы помимо тиаминдифосфата входят также липоевая кислота, кофермент А и МАО+. В результате происходит перенос с пировиноградной кислоты ацетальдегидного [c.633]

    Дальнейшие события развиваются в одном из трех направлений. В аэробных условиях происходит окислительное декарбоксилирование пирувата в соответствии со схемой, описанной в 4.1 для окислительного декарбоксилирования Of-кетокислот. В данном случае оно протекает в комплексе из трех ферментов, называемом пируватдегидрогеназным комплексом. Итогом этого процесса является [c.348]

    Первой важной реакцией является окислительное декарбоксилирование (которому подвергаются и другие а-кетокислоты) [c.255]

    Для окислительной деградации углеводов в последнее время весьма широко используется перхлорат церия. Он особенно удобен при работе с кетозами, так как превращает их карбонильный углерод в СОа. Другая область применения перхлората церия—окислительное декарбоксилирование а-кетокислот до кислоты, содержащей на один углеродный атом меньше исходной [191. [c.41]

    Окислительное декарбоксилирование трех а-кетокислот, являющихся продуктами дезаминирования валина, изолейцина и лейцина, катализируется одним и тем же ферментным комплексом-дегидрогеназой а-кетокислот. У некоторых людей вследствие генетической аномалии этот фермент неактивен, и потому а-кетокислоты накапливаются у них в крови и попадают в мочу, что придает ей специфический запах, из-за которого дан- [c.584]


    Описано свыше 50 случаев редкого аутосомно-рецессив-ного нарушения (открытого в 1954 г.), при котором моча больного и выдыхаемый им воздух имеют запах кленового сиропа . В моче обнаруживаются высокие концентрации а-кетокислот с разветвленной цепью, образующихся при переаминировании валина, лейцина и изолейцина. Характерный запах бывает обусловлен продуктами распада этих кислот. Биохимический дефект кроется в ферменте, катализирующем окислительное декарбоксилирование кетокислот, как указано на рис. 14-11. [c.116]

    Впоследствие было показано, что пирофосфорный эфир тиамина представляет собой кофермент дрожжевой карбоксилазы, а также дегидрогеназы пировиноградной кислоты, катализирующей окислительное декарбоксилирование кетокислот в животных тканях (стр, 260). Следует отметить, что кетокислоты являются нормальными промежуточными продуктами превращения углеводов в животных тканях. [c.156]

    Карбоновые кислоты декарбоксилируются [211] под действием тетраацетата свинца, давая разнообразные продукты, включая сложные эфиры типа ROA (образующиеся при замещении СООН на ацетокси-группу), алканы RH (см. т. 2, реакцию 12-39) И, если субстрат содержит 3-атом водорода, алкены, получающиеся в результате элиминирования Н и СООН, а также ряд других продуктов, являющихся результатом перегруппировок, внутримолекулярных циклизаций [212] и взаимодействия с молекулами растворителя. Если R — третичная группа, основным продуктом обычно является алкен, который часто образуется с хорошим выходом. Высокие выходы алкенов достигаются также в случае первичных или вторичных групп R, но для этой цели вместо тетраацетата свинца используют систему u(0A )2 — РЬ(0Ас)4 [213]. В отсутствие ацетата меди неразветвленные кислоты дают в основном алканы (хотя выходы, как правило, низки), а кислоты, имеющие разветвление в а-положении, могут давать сложные эфиры или алкены. Сложные эфиры с хорошими выходами получены из некоторых разветвленных кислот, из р,у-ненасыщенных кислот, а также из кислот, где R = бензильная группа. у-Кетокислоты с хорошими выходами приводят к а,р-ненасыщенным кетонам [214]. В окислительном декарбоксилировании использовались и другие окислители, включая соединения Со(П1), Ag(II), Mn(III) и Се (IV) [215]. [c.289]

    В то время как Tetrahymena должна получать липоевую кислоту с пищей, организм человека, по-видимому, способен вырабатывать ее самостоятельно, а поэтому ее нельзя рассматривать как витамин. Липоевая кислота присутствует в тканях в чрезвычайно малых количествах. Единственная достоверно известная ее функция — участи в окислительном декарбоксилировании а-кетокислот [137, 137а]. Ее [c.268]

    Окислительное декарбоксилирование а-кетокислот включает расщепление кетокислоты с образованием СО2 и присоединение остающейся ацильной группы к СоА  [c.270]

    РИС 8-19. Две системы окислительного декарбоксилирования а-кетокислот и фосфо рилирования на субстратном уровне Для расчета приведенных иа рисунке величин ДО использовали величину ДО синтеза АТР - из ADP - и НРО3", равную [c.274]

    Аминокислоты с разветвленной боковой цепью, валин, лейцин и изо лейцин, часто распадаются в организме следующим образом. Пере аминирование приводит к образованию а-кетокислоты, которая под вергается окислительному декарбоксилированию с 06pa30BaHnei ацил-СоА-производного. Последнее затем подвергается р-окисле нию. Какие продукты в этом случае образуются из изолейцина Каким образом они затем превращаются в СО2 Какие затрудненш могут встретиться при катаболизме валина и лейцина Попытай тесь предложить рациональную схему соответствующих ката боли ческих путей. Сравните свои предложения с реально установленны ми путями, приведенными на рис. 14-11. [c.357]

    Тиаминдифосфат, иногда называемый кокарбоксилазой, участвует в качестве кофермента в ферментативном декарбоксилировании а-кетокислот, окислительном декарбоксилировании а-кетокислот и в образовании ацетоина. Брюсом и Бенковичем [95] суммированы аспекты механизмов, протекающих по общим схемам (76), (77), включающим маловероятный ацил-анион. Функция кофермента состоит в устранении необходимости этого ацил-аниона. О о [c.627]

    Приведенными примерами, вероятнее всего, не ограничиваются биологические функции тиамина. В частности, ТПФ участвует в окислительном декарбоксилировании глиоксиловой кислоты и а-кетокислот, образующихся при распаде аминокислот с разветвленной боковой цепью в растениях ТПФ является эссенциальным кофактором при синтезе валина и лейцина в составе фермента ацетолактатсинтетазы. [c.222]

    Как видно из формул, липоевая кислота может существовать в окисленной (—8—8—) и восстановленной (8Н—) формах, благодаря чему реализовываются ее коферментные функции. В частности, липоевая кислота играет незаменимую роль в окислении и переносе ацильных групп в составе многокомпонентных ферментных систем. Основная функция ее-прямое участие в окислительном декарбоксилировании в тканях а-кетокислот (пировиноградной и а-кетоглутаровой см. главу 10). Липоевая кислота служит простетической группой наряду с тиаминпирофосфатом и КоА сложной мультиферментной пируват- и кетоглутарат-дегидрогеназной систем. Однако до сих пор нет сведений о механизмах биосинтеза липоевой кислоты не только в тканях животных, но и в растениях, и у микроорганизмов. [c.245]

    Следует отметить, что фермент, катализирующий окислительное декарбоксилирование указанных а-кетокислот, высокоспецифичен (по аналогии с пируватдегидрогеназным и а-кетоглутаратдегидрогеназным комплексами) и также нуждается в присутствии всех пяти кофакторов (см. главу 10). Известно наследственное заболевание болезнь кленового сиропа , при которой нарушено декарбоксилирование указанных а-кетокислот (вследствие синтеза дефектного дегидрогеназного комплекса), что приводит не только к накоплению в крови аминокислот и а-кетокислот, но и к их экскреции с мочой, издающей запах кленового сиропа. Болезнь встречается редко, проявляется обычно в раннем детском возрасте и приводит к нарушению функции мозга и летальному исходу, если не ограничить или полностью не исключить поступление с пищей лейцина, изолейцина и валина. [c.459]

    Окислительное декарбоксилирование а-кетокислот в карбоновые кислоты с уменьшенной на один атом цепью углеродных атомов осуществляется при участии системы ферментов. Через ряд каталитических превращений пировиноградная кислота, являющаяся одним из продуктов углеводного обмена (в частности гликолиза), в виде продукта ее декарбоксилирования и дегидрирования — высоко макроэргического ацетил-КоА (схема 95) — вводится в цикл трикарбоновых кислот в звене превращений щавелевоуксусной кислоты в лимонную кислоту и в конечном счете окисляется в двуокись углерода и воду. Первичное расщепление пировиноградной кислоты с отделением двуокиси углерода осуществляет ТДФ. В последующих превращениях образовавшегося ацильного остатка окислительным агентом служит (+) а-липоевая кислота (ЛК, тиоктовая кислота) [376], которая сама при этом подвергается восстановительно.му ацилированию при каталитическом действии пируватдегидрогеназы в б-ацетилдигидролипоевуто кислоту. [c.421]

    В основе механизма каталитического действия ТДФ в реакциях простого и окислительного декарбоксилирования пировиноградной кислоты и других а-кетокислот в соответствии с теорией Бреслау (380—3831 лежит способность ТДФ легко диссоциировать в нейтральных водных растворах с отщеплением протона при атоме углерода положения 2 тиазолиевого цикла, в результате чего ТДФ приобретает структуру биполярного иона (с). Ион ТДФ является каталитически активной формой, которая непосредственно взаимодействует с молекулой субстрата, обеспечивая тем самым осуществление ферментативной реакции. Механизм каталитического действия ТДФ принципиально одинаков во всех катализируемых им реакциях. [c.422]

    Реакция а-аминокислот с а-оксокислотами в отсутствие катализатора являются другим случаем, когда азот захватывается карбонильной компонентой после окислительного декарбоксилирования. Например, при простом кипячении водного раствора а-фенилглицина и пировиноградной кислоты появляется запах бензальдегида и образуется аланин. При катализе производными пиридоксаля и ионов металла или ферментативными системами, перенос аминогруппы от аминокислоты на кетокислоту протекает обратимо и без декарбоксилирования. Этот процесс (трансамини-рование) делает а-кето- и а-аминокислоты метаболически взаимо-превращаемыми. [c.244]

    Тиаминпирофосфат входит в качестве кофермента в состав ферментов или ферментных систем, катализирующих реакций простого и окислительного декарбоксилирования а-кетокислот (пировиноградной и а-кетоглютаровой) реакции переноса двухуглеродного фрагмента — активного гликолевого альдегида на соответствующие углеводы. При недостатке тиамина увеличивается содержание пировиноградной кислоты в крови, в мозговой, нервной и других тканях, что обусловливает некоторые симптомы тиаминовой недостаточ-. ности. Суточная потребность организма человека в тиамине составляет 2—3 мг. При повышении в рационе количества углеводов увеличивается потребность в тиамине. [c.60]


Смотреть страницы где упоминается термин Окислительное декарбоксилирование кетокислот: [c.270]    [c.209]    [c.75]    [c.277]    [c.108]    [c.116]    [c.157]    [c.275]    [c.421]    [c.378]    [c.378]    [c.403]    [c.108]    [c.690]    [c.15]   
Биохимия Том 3 (1980) -- [ c.206 , c.268 , c.274 , c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Декарбоксилирование

Кетокислоты



© 2025 chem21.info Реклама на сайте