Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы уран магний

    В промышленности различают черные металлы железо и его сплавы, чугун и различные виды сталей и цветные металлы алюминий, кальций, свинец, медь, золото, кадмий, никель, кобальт, серебро, все остальные металлы и их сплавы. Цветные металлы в соответствии с их свойствами делят на л е г к и е (щелочные и щелочноземельные металлы, магний, алюминий, титан), тяжелые (медь, свинец, никель, золото, цинк, марганец, кобальт), редкие, в том числе благородные и радиоактивные металлы (золото, серебро, селен, теллур, германий, металлы платиновой группы платина, палладий, родий, осмий, рутений, иридий радиоактивные металлы уран, то-266 [c.266]


    Экстракция оксината была использована для выделения алюминия и (или) определения его в железе [831], металлическом никеле [1143], тории [616], окиси тория [333], окиси вольфрама [327], в свинце, сурьме, олове и их сплавах 832), магнии высокой чистоты [701, 1637], кальции [958], хроме высокой чистоты [497], уране [40, 1297, 1525], редкоземельных элементах [1064], щелочных элементах [504, 1523], в кислотах высокой чистоты и в двуокиси кремния [820], в сталях [49, 189, 479, 485, 643, 1119, 1262], жаропрочных сплавах [1157], сплавах, не содержащих железа [520], морской воде [680, 681], промышленных водах [352), силикатных и карбонатных материалах [829, 1094), полиэтилене [129], стекле [189], монацитах [1250], в различных металлах с использованием активационного анализа [1364] и ряде других объектов [1440, 1523]. [c.126]

    Сплавы I класса нет растворимости в твердом состоянии и нет соединений. Диаграммы состояния построены лишь для двух систем этого класса, а именно уран—магний и уран—торий. К этому же классу, по-видимому, относятся системы уран—кальций и уран—натрий. Однако по обеим системам имеется слишком мало данных и отсутствуют диаграммы состояния. [c.356]

    Новые задачи в деле борьбы с коррозией возникают не только в связи с усложнением условий службы металла. Это связано и с тем, что номенклатура и число широко применяемых металлов с ходом технического прогресса сильно возрастают. Если на заре человеческой культуры применялись чаще благородные металлы золото, медь (бронза), олово, свинец и лишь ограниченно железо, то позднее основное распространение получают менее благородные, железные сплавы. В настоящее время наиболее важное значение имеют сплавы на основе железа (сталь, чугун). Одновременно с этим самое широкое применение находят сплавы алюминия, магния, по природе своей гораздо менее устойчивые к коррозии. Дальнейшие запросы техники выдвигают проблему практического использования, а значит, и защиты от коррозии таких металлов, как титан, цирконий, вольфрам, молибден, германий, индий, рений, уран, торий и ряд других. Наконец, всеобъемлющее значение приобретает борьба с коррозией вследствие непрерывного и все более бурно увеличивающегося из года в год общего запаса металлических материалов в виде эксплуатирующихся человечеством металлических конструкций. [c.10]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]


    Использование тория в качестве компонента сплавов в значительной степени повышает их устойчивость по отношению к высоким температурам. Основой таких сплавов чаще всего служат магний [1337, 1431, 1545, 2067], алюминий [920, 1668], хром [751], железо [1210], а в некоторых случаях — уран [323]. [c.202]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    За исключением реакторов, работающих на гомогенном горючем, большинство современных исследовательских и энергетических реакторов используют уран в металлическом состоянии в виде сплава или чистого металла. Металлический уран можно получать высокотемпературным восстановлением галогенидов или окислов электролизом расплавленных солей или реакцией с активными металлами. Обычно металлический уран получают восстановлением его тетрафторида кальцием или магнием. [c.108]

    Опубликован ряд работ по полярографическому определению никеля в уране [783, 1099], золоте [1043], кремнии [1042], цирконии [427, 1215] и его сплавах [385, 427], а также в легких сплавах на основе алюминия [640], в магнии [219], в электролитических ваннах [579], сточных водах [1052] и других промышленных отходах. [c.135]

    В твердом состоянии плутоний не взаимодействует со щелочными и щелочноземельными металлами, за исключением бериллия и магния. С бериллием он дает химическое соединение состава РиВе]з. Сплав плутония с бериллием применяется в качестве источников нейтронного излучения, максимальная удельная активность которого составляет 67-108 нейтрон см -сек). С близкими по химической природе торием и ураном плутоний образует области твердых растворов. [c.322]

    Взаимодействие с металлами. Молибден образует сплавы со многими металлами. Двойные сплавы молибдена можно разделить на три основные группы 1) сплавы с полной взаимной растворимостью при всех температурах или в широком интервале температур 2) сплавы с перитектикой 3) эвтектические сплавы [75]. К первой группе относятся сплавы с хромом, танталом, титаном, вольфрамом, ниобием ко второй группе — сплавы с алюминием, кобальтом, железом, никелем, ураном, цирконием, марганцем к третьей группе — сплавы с бериллием, углеродом, бором. Молибден не образует сплавов с медью, серебром, свинцом, магнием и некоторыми другими металлами. [c.299]

    До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий. [c.251]

    Разработаны методы определения магния в золах растений [15, 214], в почвах [16], в биологических жидкостях [18, 19, 20, 152, 244] шлаках и цементах [82], в сплавах на основе алюминия [6, 36, 127, 198], в железе [149], в металлическом уране [245], в никеле и сплавах на его основе [156], в рудах [175], в железных рудах, жаропрочных соединениях, цементах, чугуне, сахарах [175], в препаратах редкоземельных элементов [ 200] в чугуне [247] методы определения кальция в растительных материалах [86], в почвах [16], в биологических жидкостях [20, 79, 157, 175, 215], в рудах, сахарах [175] методы определения стронция [11, 175, 184, 242]. [c.124]

    Полученный совместным восстановлением черновой уран-молибденовый сплав может быть переплавлен в слитки в вакуумной индукционной печи. Очистка поверхности чернового слитка травлением нежелательна из-за быстрого взаимодействия сплава с азотной кислотой. Лучше применять пескоструйную очистку. Для того чтобы после выдержки расплава в графитовом тигле при температуре 1260° С и ниже содержание углерода в уран-молиб-деновых сплавах (до 9 вес. % молибдена) не превысило 0,02%, было успешно применено защитное покрытие тигля слоем цирконата магния. Однако при этом поверхность загружаемого на переплавку чернового металла должна быть свободна от шлака, так как иначе покрытие из цирконата магния быстро разрушается и ускоряется поглощение углерода. [c.440]

    Сплавы урана с кремнием. Уран-кремниевые сплавы, содержащие до 9,5 вес. % кремния, были приготовлены совместным восстановлением металлическим магнием тетрафторида урана и полностью обезвоженной окиси кремния. Более ранние эксперименты показа.яи, что извлечение кремния составляло около 80% и что большинство этих сплавов обладало исключительно высокой однородностью [13]. Однако при добавлении [c.443]

    Очень широко применяют данный реактив для травлеция циркония и его сплавов с магнием, никелем, кремнием, бором, железом, ниобием, оловом, ураном, молибденом, медью, алюминием [34]. Можно последовательно травить данным реактивом и реактивом № 1. При исследовании макроструктуры циркониевых сплавов реко- [c.77]


    Керби и Кроли [652] отделяли уран от висмута, а также от небольших количеств циркония, магния и железа, содержащихся в сплаве, экстракцией оксихинолинового комплекса урана хлороформом в присутствии комплексона III как маскирующего агента. [c.354]

    Установки для очистки аргона от кислорода с помощью ки-слородноактивных металлов. Очистка аргона от кислорода с помощью кислородноактивных металлов или их окислов основана на высокой химической активности кислорода и способности некоторых металлов к быстрому окислению, особенно при повышенной температуре. Чем ниже температура реакции и чем выше активность металла в отношении кислорода, тем проще и эффективнее можно организовать процесс очистки газов. Этому вопросу посвящен ряд работ, в которых приводится описание исследования многих металлов при разном их физическом состоянии. Следует отметить, что использование жидких металлов, амальгам, сплавов и паров металлов, как правило, не выходило за рамки аналитических целей, поскольку практически более удобно использовать раздробленные металлы (кольца, пластины, стружки, таблетки, порошки и т. д.). Одной из наиболее полных работ по использованию металлов для очистки инертных газов от кислорода (и в некоторых случаях азота) является работа [60] группы американских исследователей, которые испытали металлы пятнадцати наименований. Установка, на которой производились указанные испытания, состояла из емкости с очищаемым газом и системы осушки (в данном случае использовались хлорнокислый магний и фосфорный ангидрид), системы контроля за подачей газа, состоящей из регулятора и ротаметра, и очистительной камеры, в качестве которой использовалась труба с внутренним диаметром 27 мм я длиной 230 мм, имеющая внешний обогрев. Анализы газов производились с помошью масс-спектрометра. Барий, церий, лантан и уран из-за их крайне пирофорной природы не измельчались в дробилке, как остальные металлы, а их стружка, смоченная в масле, разрезалась на кусочки 5—Ю мм. Во вре.мя [c.122]

    При анализе сплавов висмута с ураном [637] образец предварительно переводят в раствор, который затем выпаривают досуха и остаток прокаливают при 600° С. 20 мг полученного порошка окислов перемешивают с 200 мг буфера, состоящего из равных частей (N114)2804 и Ре2(804)д и из этой смеси прессуют таблетки диаметром 3 мм и высотой 1 мм (весом 9 —12 мг). Спектры возбуждают в дуге постоянного тока между медными электродами. Таблетку помещают на нижний электрод (катод), верхний электрод затачивают на конус. Спектр фотографируют на большом кварцевом спектрографе в течение 45 сек., сила тока дуги 7 а, дуговой промежуток 3 мм. Аналитическая пара линий Mg 2802,70— Ге 2778,85 или 2797,78 А. Определяемые пределы 5-10 —7-10 % магния, относительная ошибка 5%. [c.177]

    Атомно-абсорбционный метод использован для определения магния в чугуне [286, 519, 538], в стали [1202], в алюминиевых ]895] и цинковых [244, 271] сплавах, в металлическом уране [393, 804], в высокочистых металлах — Си, Zn, d, In, Pb, Ni, Pd [272], в железной руде [480], в шлаках [519, 894], сварочных флюсах [284], цементе, известняке и магнезите [894], в силикатных материалах [271, 749, 775, 889, 897, 1093, 1095, 1237], стекле [342], угле [983, 1000, 1198], в почве [281а, 592, 648, 894, 909, 983, 1000, [c.192]

    Абсорбционный метод был применен для определения магния в водах известняках 4 , шлаках алюминиевых 5, медных55 и никелевых сплавах, чугуне , железеникеле и уране Метод использовался также для анализа вытяжек почв 5 сыворотки крови и других объектов. [c.238]

    Для определения редкоземельных элементов в бериллии, уране и титане, а также в их сплавах и окислах, Калман с сотрудниками [40 ] рекомендуют соосаждение с фторидами кальция и магния и последующее катионообменное разделение. Ионы фтора удаляют прокаливанием, а редкоземельные элементы поглощают катионитом из М НС1. Кальций и магний элюируют той же кислотой. Наконец, редкоземельные элементы удаляют из колонки и определяют спектральным методом. Отделение редкоземельных элементов от цинка можно осуществить также в хлоридном растворе. В качестве элюента Фриц и Каракер [21 ] применили 0,1М раствор хлорида этхглен-диаммония вначале элюируется цинк, а затем — лантан. [c.327]

    Все образцы были изготовлены из обычных материалов. После распиливания магний и его сплавы шлифовались механическим способом, затем химическим с помощью нитола (смесь 10%-ной азотной кислоты с этиловым спиртом). Уран обезжиривался в ацетоне, а затем его прополаскивали в спирте. [c.73]

    Экстракция при помощи оксина была использована для определения магния в кальциевых минералах, aлюJMИниeвыx [345] и циркониевых сплавах [1070] (мешающие элементы удаляли предварительной экстракцией при более низких значениях pH и (или) маскировали цианидами), в электролитическом никеле [584, 587], уране [47], биологических образцах (в присутствии цианидов и тартратов как маскирующих агентов) [1615] и других материалах [1366], а также для отделения магния от щелочных металлов [1595]. [c.131]

    Преимущества проведения восстановительного процесса в жидкой фазе, создаваемой ртутью, настолько значительны, что предложено даже при осуществлении восстановления магнием, натрием или другими активными металлами в реак-ционнную среду добавлять ртуть. Это было предложено для получения титана, циркония, гафния [31], а также для получения таких металлов, как уран, торий, актиний, плутоний и их сплавов с алюминием, титаном, цирконием [32]. [c.167]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]

    Атомно-абсорбционным свойствам и методам определения магния посвящено большое число работ. Описаны методики определения магния в углях [1], силикатах [2], цинковых сплавах [3], уране [4], золе углей [5], растительных материалах [6]. В работе [7] изложены методики определения магния в солях натрия и алюминия с использованием его экстракции метили-зобутилкетоном (чувствительность определения 3-10 %). [c.91]

    При температуре 1400 С структура тория из гранецентри-рованной кубической превращается в объемноцентрированную. В своей низкотемпературной модификации торий имеет атомный диаметр, равный 3,59 А, а в высокотемпературной форме 3,56 А. Атомные диаметры большинства металлов отличаются от атомного диаметра тория более чем на 15%, т. е. pasnni a атомных диамет-jPOB достаточна, чтобы существенно задерживать образование твердых растворов. Можно ожидать только ограниченной взаимной растворимости тория и других металлов в твердом состоянии. Вильгельмом и сотрудниками [25] были исследованы и описаны сплавы тория с алюминием, бериллием, висмутом, церием, лантаном, хромом, кобальтом, медью, золотом, гафнием, железом, свинцом, магнием, марганцем, ртутью, никелем, ниобием, серебром, танталом, титаном, вольфрамом, ураном, ванадием, цинком и циркснлем. [c.40]

    Сплавы урана с ниобием. Попытки получить уран-ниобиевые сплавы путем совместного восстановления магнием с пятиокисью ниобия (NbaOj) не дали удовлетворительных результатов [19]. Частично это может быть объяснено значительным повышением температуры плавления сплава по мере увеличения содержания ниобия. Более успешными оказались опыты с шихтой, содержащей соль ниобия NaaNbOFg, причем в качестве восстановителя использовался кальций, взятый с 30%-ным избытком против стехиометрии [20]. В этом случае количество вводимого в шихту кислорода заметно уменьшалось, что благоприятно влияло на свойства шлака, а теплота реакции с кальцием была значительно больше, что облегчало расплавление металла и шлака. Опыты в больших бомбах не проводились из-за отсутствия в продаже оксифторниобата натрия. [c.442]

    Уран-кремниевые сплавы могут быть приготовлены методом индукционной плавки в вакууме, причем легирующая добавка вводится в шихту в виде кремния (чистотой 99,85%) или обезвоженной окиси кремния. Извлечение в сплав присадки до 2 вес. % кремния было хорошим. Кремнекислота, используемая для приготовления сплавов урана с кремнием, предварительно должна быть полностью обезвожена при 1204° С. При плавках в тиглях, покрытых защитной обмазкой из цирконата магния или смеси окиси бериллия с сульфатом бериллия, загрязнение углеродом не превышало 0,06%. Для более легкого доведения до конца перитектической реакции образования е-фазы существенное значение имеет наличие в структуре мелких частиц из512. Чтобы получить мелкие частицы из512, желательно отливать в кокиль все сплавы с содержанием кремния выше эвтектического. [c.443]

    Применение тория в качестве компонента сп.павов с Mg, А1, Сг, Fe, U повышает их жаропрочность. При выборе наиболее рационального метода растворения сплавов необходимо учитьшать ие только их состав, г(о также и средства, использующиеся для последующего отделения основных компонентов. Об анализе сплавов тория с магнием см. 193, 132, 247, 248, 249], с алюминием и кремнием 1250], алюкшпием, медью, магнием и марганцем 12501, хромом 1218], с железом 1217, 220, 251, 2521, с ураном 146, 253, 254], с индием 1255]. [c.381]


Смотреть страницы где упоминается термин Сплавы уран магний: [c.11]    [c.141]    [c.40]    [c.6]    [c.721]    [c.154]    [c.272]    [c.392]    [c.154]    [c.123]    [c.375]    [c.439]   
Технология производства урана (1961) -- [ c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Магний сплавы



© 2024 chem21.info Реклама на сайте