Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы уран торий

    Так, аргон используют в качестве защитной атмосферы (предохранение от окисления) при выплавке таких металлов, как уран, торий, германий, цирконий и гафний, а также при получении чистого кремния. На практике широко распространен способ электросварки (а также наплавки и резки) металлов в защитной атмосфере инертного газа —обычно аргона (аргонно-дуговая сварка титановых, алюминиевых, магниевых и др. сплавов, меди, вольфрама, нержавеющих сталей и т. д.). Чистые гелий и аргон—непревзойденные защитные газы при работе с химически малоустойчивыми веществами, легко поддающимися окислению. [c.544]


    Кальций используется в качестве восстановителя при извлечении из соединений почти всех редкоземельных элементов и таких металлов как уран, торий, хром, ванадий, цирконий, цезий, рубидий, титан, бериллий, при очистке свинца от олова и висмута, для очистки от серы нефтепродуктов, для производства антифрикционных и других сплавов, в виде металла и сплавов в химических источниках тока. [c.240]

    Определение алюминия в уране, тории, плутонии и их сплавах [c.222]

    Кальций—один из самых распространенных элементов в земной коре. Используется он как восстановитель в химической и металлургической промышленности, раскислитель при получении ряда сплавов и специальных сталей, в аккумуляторной промышленности при изготовлении свинцовых положительных пластин. Кальций применяют при очистке свинца и олова от висмута. Учитывая большую восстановительную способность кальция и его гидрида, он применяется для производства тугоплавких металлов, таких, как титан, цирконий, тантал, ниобий, уран, торий и др. [c.256]

    О РАБОТЕ С УРАНОМ, ТОРИЕМ, ИХ СПЛАВАМИ И СОЕДИНЕНИЯМИ [3] [c.290]

    ПРАВИЛА БЕЗОПАСНОСТИ РАБОТЫ В ХИМИЧЕСКИХ ЛАБОРАТОРИЯХ С УРАНОМ, ТОРИЕМ, ИХ СОЕДИНЕНИЯМИ И СПЛАВАМИ [c.291]

    Химические лаборатории, в которых выполняются работы с ураном, торием, их соединениями и сплавами, по своему устройству и оборудованию должны соответствовать требованиям, предъявляемым к радиохимическим лабораториям 3-го класса (см. стр. 283). [c.291]

    Особенностью гидридов ванадия, ниобия, тантала и их сплавов является чувствительность стабильности этих гидридов к небольщим количествам металлических примесей к исходным металлам. Следуя этим путем можно в зависимости от количества этих примесей получить спектр гидридов с различными Р — У-характеристи-ками, как и в случае, например. АВл-сплавов. Палладий, уран, торий и их сплавы имеют пока научный интерес, хотя гидрид урана UH3 практически использовался в качестве источника водорода для ряда экспериментальных целей. Он разлагается при температуре 430 °С, при этом получается очень чистый водород. [c.90]

    В настоящее время советская химическая промышленность, используя современные достижения химии, выпускает огромный и разнообразный ассортимент новых материалов специальное топливо для поршневых и реактивных двигателей сплавы различного назначения (легкие, жаропрочные, сверхтвердые) шины специальной конструкции, позволяющие развивать скорость на автомашинах до 300 кмЫ, а также шины, способные выдержать пробег до 600 ООО км полупроводниковые материалы для устройств связи и кибернетических машин материалы для атомной техники (уран, торий, цирконий, тяжелая вода) высококачественную изоляцию для нужд электротехники специальные новые цементы для строительной промышленности многие виды пластмасс, синтетических волокон ядохимикаты и концентрированные удобрения для сельского хозяйства новые лекарственные препараты и т. д. [c.4]


    За последние два десятилетия значительно увеличились объем и масштабы производства некоторых редких металлов и их соединений (титан, цирконий, ниобий, германий, индий, галлий, церий, литий и другие, гидриды, бориды, иодиды, карбиды, большое число разнообразных сплавов). Выпускаются редкие металлы и их соединения высокой чистоты (ультрачистые) для атомной, полупроводниковой и металлургической промышленности (уран, торий, цирконий и др.). [c.13]

    Сплавы I класса нет растворимости в твердом состоянии и нет соединений. Диаграммы состояния построены лишь для двух систем этого класса, а именно уран—магний и уран—торий. К этому же классу, по-видимому, относятся системы уран—кальций и уран—натрий. Однако по обеим системам имеется слишком мало данных и отсутствуют диаграммы состояния. [c.356]

    Рост требований науки и техники к чистоте материалов заставил аналитическую химию обратиться к определению малых количеств примесей в чистых веществах. В первые годы развития атомной промышленности необходимы были высокочистые уран, торий, бериллий, цирконий, ниобий и другие металлы. В дальнейшем еще более чистые вещества потребовались электронной технике — германий, кремний, арсенид галлия, фосфид индия и другие полупроводники. Необходимо было наладить производство люминофоров, сцинтилляционных материалов, которые также должны отвечать жестким требованиям в отношении чистоты. Перед химической промышленностью была поставлена задача изготовления особо чистых химических реактивов и большого числа чистых вспомогательных веществ. Стали существенно более чистыми металлы и сплавы, в частности употребляемые как жаропрочные и химически стойкие. [c.3]

    Новые задачи в деле борьбы с коррозией возникают не только в связи с усложнением условий службы металла. Это связано и с тем, что номенклатура и число широко применяемых металлов с ходом технического прогресса сильно возрастают. Если на заре человеческой культуры применялись чаще благородные металлы золото, медь (бронза), олово, свинец и лишь ограниченно железо, то позднее основное распространение получают менее благородные, железные сплавы. В настоящее время наиболее важное значение имеют сплавы на основе железа (сталь, чугун). Одновременно с этим самое широкое применение находят сплавы алюминия, магния, по природе своей гораздо менее устойчивые к коррозии. Дальнейшие запросы техники выдвигают проблему практического использования, а значит, и защиты от коррозии таких металлов, как титан, цирконий, вольфрам, молибден, германий, индий, рений, уран, торий и ряд других. Наконец, всеобъемлющее значение приобретает борьба с коррозией вследствие непрерывного и все более бурно увеличивающегося из года в год общего запаса металлических материалов в виде эксплуатирующихся человечеством металлических конструкций. [c.10]

    При нагревании актиноиды взаимодействуют и с большинством других неметаллов. Получающиеся соединения характеризуются высокими теплотами образования. Торий, уран и другие актиноиды способны поглощать большие количества водорода, образуя гидриды переменного состава — между ЭНз и ЭН 1. С металлами актиноиды образуют сплавы, в составе которых обнаруживаются интерметаллиды. В ряду [c.558]

    Уран, протактиний и торий отличаются от своих аналогов по химическим свойствам. Уран, в противоположность хрому, молибдену и вольфраму, не образует карбонильных соединений, а его карбид легко гидролизуется водой (карбиды хрома, молибдена и вольфрама представляют собой твердые сплавы, химически инертные). В отличие от титана, циркония и гафния торий образует легко гидролизующийся карбид, нитрид и гидрид. Уран не встречается в природе вместе с молибденом и вольфрамом, а сопровождается обычно торием и лантаноидами торий в свою очередь содержится [c.285]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Использование тория в качестве компонента сплавов в значительной степени повышает их устойчивость по отношению к высоким температурам. Основой таких сплавов чаще всего служат магний [1337, 1431, 1545, 2067], алюминий [920, 1668], хром [751], железо [1210], а в некоторых случаях — уран [323]. [c.202]

    Применение ионообменного разделения в анализе висмутовых сплавов. I. Бинарные сплавы с ураном и торием [478]. [c.236]

    Применение ионообменного разделения в анализе висмутовых сплавов. П. Тройные сплавы, содержащие уран и торий [479]. [c.236]

    Ионообменное разделение в анализе сплавов, полученных на основе висмута. I. Бинарные сплавы с ураном и торием [2556]. [c.346]

    Титан, цирконий, ниобий, тантал, торий, уран, медь, таллий, а также бор, кремний и другие в виде сплавов [c.329]

    Все препараты, соединения и сплавы, содержащие уран и торий, не находящиеся в работе, хранить в защитном контейнере, [c.291]

    ТОРИЯ СПЛАВЫ — сплавы на основе тория. К Т. с. относятся сплавы тория с ураном или плутонием. Снлавы торий — уран представляют собой смесь твердых растворов урапа в тории и тория в уране растворимость урана в тории при т-ре до [c.579]

    При большем содержании урана предел текучести, предел прочности и твердость (НУ) увеличиваются почти линейно, составляя в сплаве с 50% и соответственно 27, 47 и 145 кгс мм с относительным удлинением 12 и относительным сужением 25%. Вследствие двухфазного состояния сопротивление ползучести сплавов торий — уран при т-ре 700° С понижается с увеличением содержания урана для сплавов с 5 10 и 20% и напряженне для скорости ползучести 0,01% в час составляет соответственно 1,2 0,77 и 0,34 кгс .чм . Сплавы торий — уран, облученные до высоких степеней выгорания, хорошо сопротивляются высокотемпературному распуханию. Так, у литых образцов с 10 15 20 25 и 31% и, облученных до выгорания [c.579]

    При определении следовых количеств примесей в сплавах торий— уран и плутоний — торий макрокомпоненты отделялись комбинированным методом, заключающимся в проведении операций ионного обмена и экстракционной хроматографии в одной и той же колонке [36]. Четырехвалентные актиноиды (ТЬ, и) сорбировались на анионите дауэкс 1X8 из 8 М НЫОз, а уран(VI) сорбировался ТБФ, нанесенным на кель-Р. [c.266]

    Анализ следов примесей в сплавах торий — уран и плутоний — торий — уран методом анионообменной распределительной хроматографии. [c.544]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Способ получения тугоплавких металлов IV—VIII подгрупп периодической системы (цирконий, тантал, уран, торий), а также сплавов этих металлов и устройство для осуществления этого способа. [c.219]

    Ураноциркониевые сплавы и торий. Сплавы урана с цирконием не полностью растворяются в азотной кислоте. Остается очень реакционноспособный нерастворимый осадок, который даже при слабом механическом ударе способен вступить с избытком кислоты в реакцию взрывного характера [44]. Однако спокойное и полное растворение этого осадка может быть достигнуто при добавлении в азотную кислоту небольших количеств ионов фтора. Наоборот, сплав может быть в основном растворен в плавиковой кислоте, а оставшийся не растворенным уран переведен в раствор добавлением азотной кислоты. Реакция тория с азотной кислотой проходит очень медленно. В этом случае опять-таки добавление ионов фтора облегчает растворение. [c.124]

    В настоящее время резко возрос интерес химиков к определению малых количеств примесей в чистых веществах. Это связано с организацией и развитием атомной промышленности, которой необходимы сверхчистые уран, торий, бериллий, цирконий, ниобий и др. металлы. Еще более чистые вещества потребовались в электронике и электротехнике (германий и кремний, селен и селени-ды, арсенид галлия, антимонид сурьмы, фосфиды индия и галлия). Для изготовления лазеров нужны чистый рубидий и редкоземельные элементы. Новая техника нуждается также в высокочистых хлориде и бромиде кадмия, фторидах лития и кальция, иодиде калия, бромиде и иодиде индия, цезии высокой чистоты, гидриде цезия и др. Стали существенно более чистыми материалы, с которыми работают в промышленности химических реактивов, в черной и цветной металлургии при производстве жаропрочных и химически стойких сплавов и т. д. [c.9]

    Преимущества проведения восстановительного процесса в жидкой фазе, создаваемой ртутью, настолько значительны, что предложено даже при осуществлении восстановления магнием, натрием или другими активными металлами в реак-ционнную среду добавлять ртуть. Это было предложено для получения титана, циркония, гафния [31], а также для получения таких металлов, как уран, торий, актиний, плутоний и их сплавов с алюминием, титаном, цирконием [32]. [c.167]

    Система уран — торий. Диаграмма состояния этой системы показана на рис. 10. 4Р. Система имеет две эвтектики и перитектоид в области, богатой торием. Растворимость тория в уране очень невелика (0,3 ат. % Th при 900° С), однако уран растворяется в тории в количестве около 2 ат. % при 1000° С. Структура сплавов представляет собой в основном механическую смесь эвтектического типа. [c.356]

    При нагревании актиноиды взаимодействуют и с большинством других неметаллов. Получающиеся соединения характеризуются высокими теплотами образования. Торий, уран и другие актиноиды способны поглощать большие количества водорода, образуя гидриды переменного состава — между ЭН3 и ЭН . С металлами актиноиды образуют сплавы, в составе которых обнаруживаются интерметал-ЛИДЫ. В ряду напряжений актиноиды находятся далеко впереди водорода, поэтому окисляются водой и тем более кислотами. Со щелочами в обычных условиях не взаимодействуют. [c.650]

    В металлургии кальций широко применяют в качестве восстановителя при проиэБодстве уран з, тория и других металлов. С помошью кальция можно восстанавливать оксиды и фториды урана или тория. Сплав кальция с кремнием (силикокальций) находит применение в качестве раскислителя и дегазатора при производстве высококачественной стали. Известно применение сплавов кальция со свинцом в качестве баббитов. Кальций и его сплавы используются в химических источниках тока. Один из способов производства гидрида кальция заключается в нагревании металлического кальция в среде водорода. [c.500]

    Наиб, распространен Я. т. ц. на основе урана, обогащенного изотопом с реакторами па тепловых (медленных) нейтронах. В кач-ве ядерного топлива использ. иОз, а также карбиды и нитриды и, сплавы и с Мо, к( меты, солевые фторидные расплавы, содержащие ир . Перспективны Я. т. ц. с реакторами-размножителями и воспроизводством ядерного горючего — уран-плутонпевый и торий урановый с ядерным горючим соотв. и, - Ри и ТЬ, П.таниру ется создание Я. т. ц. с использ. тепла высокотемпературных ядерных реакторов для проведения энергоемких хим. и металлургич. процессов. [c.726]

    Для определения серебра в свинцовосурьмяных сплавах готовят 0,5 %-ный раствор в этаноле. Для определения серебра в металлическом уране применяют 0,004 %-ный раствор в этаноле. Для определения серебра в соединениях тория применяют 0,01 7о-ный раствор в ле- [c.138]

    Описанный метод применяют для определения марганца в сталях, чугунах, рудах [22, 39, 50, 186, 407, 408, 633, 669, 1018, 1085, 1101, 1179, 1506], в горных породах [754], различных сплавах [137, 1057, 1487], мартеновских шлаках [136, 207, 686, 1101], соединениях тория [245], никеле [145, 364], алюлшнии [614], биологических материалах [ИЗО], воде [542, 1018], почвах [1204] и др. При определении марганца в едких щелочах предварительно экстрагируют диэтилдитиокарбаминатный комплекс Мп(П), а затем разрушают его и окисляют Мп(П) до Mn(VII) персульфатом аммония. Чувствительность метода 1-10 % [379]. Простой метод определения марганца в серебре высокой чистоты состоит в осаждении серебра в виде Ag l и определении Мп в фильтрате с чувствительностью 10 —10 % и относительной ошибкой 2—7% [1079]. Определение марганца в уране основано на отделении последнего экстракцией смесью ТБФ и G I4 и измерении оптической плотности водного раствора при Ъ2Ъ нм после окисления Мп(П)до Mn(VII). Метод позволяет определять до 2 мкг Мп/з при навеске урана 2 г [1077]. Определение больших количеств марганца производят дифференциальным фотометрическим методом [50]. [c.55]


Смотреть страницы где упоминается термин Сплавы уран торий: [c.11]    [c.711]    [c.49]    [c.293]    [c.627]    [c.213]   
Технология производства урана (1961) -- [ c.356 ]




ПОИСК







© 2025 chem21.info Реклама на сайте