Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термопласты промышленные

    Ароматические углеводороды. Наиболее активные растворители каучуков. Растворяют бутадиен-стирольные и бутадиен-нитрильные каучуки, хлорсульфо-полиэтилен, полинзобутилен при температуре 70—80° С, а также полиэтилен, полипропилен и другие термопласты. Промышленное применение ароматических углеводородов весьма ограничено вследствие их токсичности. Наиболее распространенными растворителями этой группы являются толуол и ксилол. [c.469]


    Основной тенденцией в развитии промышленности пластических масс является непрерывный рост доли термопластов а общем объеме производства полимерных материалов. [c.345]

    Метод сушки инфракрасными лучами применяют в химической промышленности для подсушки таблеток, пресспорошков и термопластов. [c.284]

    Политетрафторэтилен (фторопласт) [—С 2—Ср2—]п —. термопласт, получаемый методом радикальной полимеризации тетрафторэтилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям. Прекрасный диэлектрик. Имеет очень широкие температурные пределы эксплуатации (от —270 до +260 °С) (при 400 °С разлагается с выделением фтора). Не растворяется в органических растворителях, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий. [c.367]

    Между тем, сегодняшняя благополучная ситуация с ФС возникла всего несколько лет назад. В самом деле, начиная с конца 40-х и до середины 70-х годов относительная доля ФС в общем объеме производства полимерных материалов неуклонно сокращалась за счет бурного развития термопластов и полиуретанов. Более того, некоторые промышленно развитые страны Западной Европы и США фактически прекратили производство ФС, [c.9]

    Область применения САПР Пластик . Систему можно использовать в различных отраслях промышленности, изготовляющих литьевые изделия из термопластов. [c.372]

    Полиамиды как промышленные термопласты появились после второй мировой войны вслед за их успешным применением в военные годы в текстильной промышленности. Многотоннажное производство полиамидов стало возможным главным образом благодаря применению методов переработки и технологического оборудования, уже используемого для других термопластов, а также благодаря относительно низкой стоимости сырья. Удивительные свойства полиамидов быстро обеспечили им широкое использование. [c.9]

    Зависимость Р от V может быть представлена в виде набора точек, произведение координат которых дает предельно допустимое значение РК-фак-тора. В двойных логарифмических координатах эта зависимость практически линейна. Рис. 3.30, на котором приведены зависимости Р—V для некоторых промышленных термопластов [37], демонстрирует преимущества полиамидов перед другими полимерами. Многие специалисты считают, что предельно допустимое значение PV-фактора характеризует стойкость изделия к повышению температуры до перехода в высокоэластическое состояние материала лишь для определенных условий эксплуатации и, в частности, для данной конфигурации подшипника. Поэтому для предсказания поведения материала при длительной работе необходимо провести испытания на износостойкость изделия прп различных значениях PV ниже предельного уровня и определить скорость износа и период работоспособности (т. е. время до резкого увеличения износа) для каждого значения PV. На рис. 3.31 приведены скорости износа и периоды жизни промышленного полиамида и ненаполненного полиацеталя для различных значений РУ-фактора [38]. [c.134]


    По технологическим свойствам промышленные полиамиды, перерабатываемые литьем под давлением, отличаются от других термопластов следующими показателями низкой вязкостью, высокой температурой расплава узким температурным интервалом переработки, ограниченным температурами плавления и разложения чувствительностью к влаге резким переходом из твердого состояния в жидкое. [c.165]

    Поликарбонаты являются термопластичными полимерами, поэтому их можно перерабатывать обычными методами, применяемыми в промышленности для переработки термопластов. [c.205]

    Возможность изготовления из поликарбонатов изделий сложной конфигурации и стойкость их к атмосферному воздействию позволяют поликарбонатам успешно конкурировать в электротехнической промышленности с другими термопластами. Большое значение имеет также негорючесть поликарбонатов и то обстоятельство, что при деструкции полимера в случае пожара выделяются нетоксичные газообразные продукты (главным образом двуокись углерода). [c.282]

    Роботизация технологических процессов делает актуальной проблему получения реологических характеристик на встраиваемых в перерабатывающее оборудование вискозиметрах. В частности, описа на [32] конструкция нового промышленного реометра капиллярного типа, встроенного непосредственно в экструзионную линию двухшнекового экструдера. В работе [33] проведена сопоставительная оценка реологических характеристик термопластов, полученных на встраиваемом вискозиметре постоянного расхода и на капиллярном вискозиметре постоянного давления. В диапазоне скоростей сдвига, характерном для процессов переработки, обнаружены отклонения в 3-5%, а для полиэтилена - 10-14 % однако эту систематическую разницу можно учитывать с помощью коэффициентов корреляции. [c.452]

    С течением времени происходит изменение удельного веса различных методов в структуре промышленности переработки пластмасс. Так, если в 1958 г. основная доля пластмасс — в СССР 85%—перерабатывалась горячим прессованием, то в 1975 г. на него приходилось уже только 30%. Основными к этому времени стали литье под давлением, экструзия и вакуумформование — типичные процессы переработки термопластов. Это связано не только с возросшей долей производства термопластов, но также с совершенствованием оборудования и оптимизацией процессов переработки термопластов. [c.273]

    В табл. 2. приведены реологические характеристики промышленных эластомеров (каучуков и саженаполненных смесей на их основе). Для сравнения представлены характеристики поливинилхлорида (ПВХ) и типичного термопласта — полиэтилена 1200-Н [12]. [c.65]

    При термической полимеризации [2,2] парациклофана в промышленности получают термопласты (поли-п-ксилол, парилен). [c.275]

    Вязкость расплава больщинства ТФП с высокой температурой плавления вьше вязкости расплава обычных промышленных термопластов и в ряде случаев может быть снижена только при температурах, граничащих с температурой разложения материала. Ньютоновский режим течения этих ТФП, т.е. пропор- [c.197]

    Листовые термопласты применяются для получения металлопластов — металлических листов, плакированных с одной или двух сторон пластмассой, Металлопласты применяются для изготовления коррозионностойкого оборудования они могут использоваться как в химическом мащиностроении, так и в других отраслях промышленности [57, 58]. [c.195]

    В первом разделе (главы 1, 2, 3) приводятся типология полимеров и полимерных материалов и краткое описание основных разновидностей промышленных пластиков, в том числе армированных реакто- и термопластов, с расшифровкой стандартных обозначений их марок. [c.5]

    К промышленным полимерам с повышенной теплостойкостью относятся прежде всего простые полиэфиры — полифениленоксид и полисульфон, ароматический полиамид — фенилон, а также полиимиды. Для этих конструкционных термопластов характерно существенно повышенное значение такой важной характеристики, как теплостойкость по Мартенсу, которая составляет 180-220 °С (табл. 11). [c.46]

    Основные марки, ПТР, методы переработки и назначение промышленных термопластов [c.192]

    Более подробные сведения по выбору способа переработки термопластов различных промышленных марок приводятся в табл. 58 [10]. [c.195]

    Термостабильность расплавов основных промышленных термопластов [10] [c.195]

    В промышленности переработки пластмасс смешение широко применяется при переработке поливинилхлорида — для его пластификации, а также для введения в термопласты стабилизаторов, наполнителей, красителей, противостарителей и других добавок. [c.164]

    За последнее время в различных отраслях промышленности находят все возрастающее применение новые пленочные клен на основе модифицированных эпоксидных смол [59], Модификаторами эпоксидных олигомеров служат каучуки, ацетали поливинилового спирта, полиэфиры и Другие термопласты и эластомеры. [c.159]

    Для серийного производства мелких деталей оказались незаменимыми уретановые термоэластопласты вследствие возможности переработки их современными скоростными методами литья под давлением или экструзией на оборудовании промышленности пластмасс. Таким способом перерабатываются высокомодульные эластомеры, используемые в качестве конструкционных материалов. К изделиям из них относятся детали для авхомобилей (твердость по Шору А 85—95) сферические подшипники рычагов переключения скоростей, подшипники рулевой колонки, шайбы под концевые подшипники. Термоэластопласты с высокой твердостью пригодны также для уплотнения пневматических и гидравлических устройств, изготовления бесшумных шестерен, сильфонов, деталей низа обуви. Термопласты с молекулярной массой менее 20 000 растворимы и применяются для изготовления клеев, которые обладают уникальным свойством — прочно склеивать любые виды натуральной и искусственной кожи. [c.548]


    Ведун1ее место в промышленности пластмасс США занимают термопласты, однако специфические свойства реактопластов на основе полиэфирных, эпоксидных, полиуретановых и других смол обеспечивают им широкое применение в различных отраслях промышленности. [c.166]

    Поскольку проскальзывание цепей, микрофибрилл и фибрилл уменьшает вероятность механического разрыва цепей или не допускает его совсем, то высокоориентированные волокна термопластов, подверженные пластическому деформированию лишь в определенных условиях, являются наиболее подходящими объектами для исследования кинетики разрыва цепи. Исследования методом ЭПР на волокнах ПА-6, ПА-66, ПА-12, ПЭ, ПП, ПЭТФ и других материалов были выполнены в отдельных лабораториях вначале в СССР, а позднее в США, ФРГ, Великобритании и Японии (см. табл. 6.2). Практически все исследователи имели дело с высокоориентированными одиночными волокнами, пучком полосок или с выпускаемыми промышленностью нитями, содержащими по нескольку сот волокон диаметром 20 мкм каждое. Как показало рассмотрение структуры волокна (гл. 2), оно состоит из фибрилл, а те в свою [c.187]

    Очевидно, что экономичность процесса литья под давлением реакционноспособных олигомеров определяется скоростью протекания реакции полимеризации. Иными словами, этот процесс не может конкурировать с литьем под давлением термопластов, но может быть сравним с формованием методом заливки. Отсюда видно, что не все полимеризующиеся системы следует перерабатывать литьем под давлением. Со времени промышленного освоения процесса, т. е. с начала 70-х годов, наиболее часто используют линейные или пространственно-сшитые полиуретаны — продукты взаимодействия двух- или трехатомных спиртов и ди- или триизоцианатов. Используют также наполненные волокнами полиэфиры. В дальнейшем, когда процесс литья под давлением будет лучше изучен и начнут чаще применять форполимеры, можно будет надеяться на более широкое использование сшивающихся полимеров. Пока эта проблема находится в начальной стадии своего развития. [c.542]

    Директивами XXIV съезда КПСС по пятилетнему плану развития народного хозяйства СССР предусмотрено увеличение производства товаров химической промышленности в 1,7 раза, в том числе пластических масс и смол в 2 раза. Более 50% выпуска синтетических полимерных материалов составляют термопласты. По данным мировой статистики ожидается, что выпуск синтетических материалов сравняется в 1980 г. с выпуском металлов на земном шаре, а к 2000 г. превысит выпуск металлов в десять раз. [c.96]

    Толипропилен, в особенности пленка из него, обладает всеми необходимыми свойствами для применения в этой области. По своим характеристикам полипропиленовая пленка близка к полиэтиленовой, причем по некоторым показателям превосходит ее. По сравнению с пленками нз других термопластов полипропиленовая пленка имеет преимущество в отношении стойкости к нагреванию и действию химических реагентов (она может быть подвергнута стерилизации при температуре-выше 100 С, что определяет целесообразность ее использования в пищевой и фармацевтической промышленности). Ее достоинствами являются также превосходная [c.293]

    Более существенная причина отставания теоретического и технологического уровня подготовительной части резинового, производства от уровня технологии переработки термопластов состоит, очевидно, в сохраняющихся традиционных эмпирических подходах. Даже в современных руководствах [4, с. 70 21, с. 195] по процессам и аппаратам резиновой промышленности и промышленности пластмасс расчет экструдеров для профилирования резиновых заготовок предлагают вести по эмпирическим фopмyлa vI, изобилующим опытными коэффициентами, методики определения которых не известны или очень сложны (например, коэффициент трения резиновой смеси о червяк или о цилиндр экструдера, коэффициент заполнения межвиткового пространства и т. п.). [c.255]

    Все промышленные фторсодержащие полимеры, за исключением ПТФЭ, являются термопластичными полимерами и относятся к числу так называемых плавких фторопластов. Вязкость расплава при температуре переработки термопластичных фторсодержащих полимеров (ТФП) находится в пределах lO -f-lO Па-с (10" —10 П) (табл. VII. 1), что позволяет перерабатывать их всеми общепринятыми для обычных термопластов способами. Однако при переработке ТФП необходимо учитывать ряд факторов. [c.195]

    Рациональное применение полимеров в конструкциях значительно увеличивает долговечность этих конструкций. Рассмотрим характерные примеры использования термопластов в химической и иефтехимической промышленности [50, 151]. Наиболее широкое распространение в этих отраслях получили напорные трубы из полиэтилена, полипропилена, винипласта и фторлона. Весьма перспективны также трубы из полиамидов, полистирола, поликарбоната, полиформальдегида и т. д. Оболочки и емкости больших размеров с толщиной стенок до 25 мм получают методом экструзии, центробежного литья и спиральной намотки [202]. [c.13]

    Фторопласты — наиболее химически стойкие из всех известршх промышленных термопластов. Они находят широкое применение в машиностроении, электротехнике, для химического оборудования, в качестве уплотнений и т. д. [c.83]

    Производство труб и арматуры, футерованных химически стойкими термопластами, в частности пентапластом и фторопластом, получило широкое ра С Простране-ние [15, с. 12— 14 47—49 33, 55, 56]. Отечественная промышленность вьспуокает трубы, футерованные винипластом и полиэтиленом низ1кой и высокой плотности. [c.195]

    В 2001 г. вышло в свет небольшим тиражом учебное пособие Крыжановского В. К. и Бурлова В. В. Прикладная физика полимерных материалов , которое встретило одобрение не только преподавателей И студентов полимерных специальностей вузов, но и специалистов, работающих в производстве изделий из пластмасс. Идя навстречу именно их пожеланиям и предложениям, авторы на базе упомянутой выше книги разработали предлагаемое читателю учебно-справочное пособие, отличающееся большей практической направленностью и содержащее новые главы по свойствам армированных пластиков и их разновидностям, химической и тепловой стойкости полимерных материалов, по основным параметрам пере-рабатываемости промышленных термопластов. [c.5]

    Полиформальдегид является простым полиэфиром (полимер оксиметилена). Его синтезируют полимеризацией формальдегида или триоксана в растворе, расплаве и суспензии. Получают кристаллизующийся полимер (степень кристалличности более 30 %) с ММ = 30-50 тыс. и узким молекулярно-массовым распределением. Особенность ПФ — низкая термостабильность. Процесс деструкции начинается уже при 100 °С. Для повышения термостабильности формальдегид полимеризуют с диоксоланом, получая сополимер СФД и с триоксоланом — сополимер СТД. Их температура термодеструкции составляет 240-250 °С. СФД и СТД являются промышленными марками. Благодаря высоким физико-механическим свойствам, малой усадке и особенно хорошим антифрикционным свойствам полиформальдегид и сополимеры СФД широко применяются в качестве конструкционных термопластов и для изготовления деталей передач (зубчатые колеса, кулачки, подшипники). Основные свойства этих материалов приведены в табл. 10. [c.45]

    В связи с термическим обратимым распадом солевой вулканизационной сетки в карбоксилатных резинах было предложено [44] изготовлять резиновые изделия из чисто солевых (бессерных) вулканизатов методами, применяемыми для термопластов — прессованием, экструзией и литьем под давлением. Свойства таких ионных термоэластопластов (ИТЭП) можно широко варьировать с одной стороны, в зависимости от природы сшивающего катиона температура девулканизации меняется от 80—90°С (2п +) до 200 °С (Ва2+) с другой, обеспечение достаточной текучести расплава осуществляется при иопользовании высокопластичных (сравнительно низкомолекулярны х) полимеров, поскольку физико-механические показатели солевых вулканизатов при умеренных температурах и в этом случае достаточно высоки. Вулканизацию и наполнение карбоксилсодержащих каучуков при производстве ИТЭП целесообразно проводить непосредственно 1на стадии латекса. ИТЭП на основе каучука СКС-30-1-3 проходит опытно-промышленные испытания при изготовлении некоторых резиновых изделий. [c.180]

    Короткие волокна давно используют в качестве наполнителей для эластомерных материалов. Однако в противоположность своим функциям в термопластах волокна в эластомерах не играют роль армирующих материалов главным образом из-за низкой адгезии волокна к матрице. Хорошая адгезия требуется для возникновения высоких сдвиговых яапряжений на границе раздела фаз без их разделения, что обеспечивает передачу нагрузки на волокно. Для получения хорошей адгезии в композициях волокон с термопластами применяют полифункциональные силаны, которые химически связывают наполнитель, например стеклянное волокно, с полимерной матрицей. Однако с эластомерами подобных попыток практически не предпринималось, вероятно, из-за высокой стоимости силанов в сравнении со стоимостью промышленных каучуков. [c.289]


Смотреть страницы где упоминается термин Термопласты промышленные: [c.220]    [c.290]    [c.447]    [c.176]    [c.197]    [c.80]    [c.74]    [c.101]   
Технология переработки пластических масс (1988) -- [ c.68 ]




ПОИСК







© 2025 chem21.info Реклама на сайте