Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зелинского катализатор

    По представлениям Д. И. Менделеева и Н. Д. Зелинского, катализатор непосредственно участвует в реакции. Молекулы реагирующих веществ подвергаются на катализаторе деформации, что является основной причиной их высокой реакционной способности 1В присутствии катализатора и приводит к возникновению активных соединений, богатых свободной энергией с последующим образованием конечных продуктов. [c.26]


    Открытие в 1934—37 гг. новых реакций на платиновом катализаторе, как гидрогенолиз циклопентановых углеводородов [12] и каталитическая ароматизация парафиновых углеводородов [13], не повлияло на точность метода Н. Д. Зелинского в деле исследования нефтяных углеводородов, как это доказано целым рядом исследователей [14—16]. [c.75]

    Для этого вышеуказанная фракция пропускалась над палладированным углем, который был приготовлен ио Н. Д. Зелинскому и М. Б. Туровой-Поляк [18]. Катализатор сушился сперва в термостате прп 120°, а потом помещался в стеклянную трубку электропечи и восстанавливался в токе водорода сперва ирн 160°, затем при 240 и 360° — по 6 часов. Катализатор сод ржал 14% палладия, его активность по циклогексапу равнялась 75%, при 300—310 . [c.77]

    Последующие стадии исследования представляли дегидрирование углеводородов ряда декалина, в.ходящих в состав исследуемой фракции. Для этой цели использовали палладиевый катализатор, приготовленный по методу Н. Д. Зелинского и М. Б. Туровой-Поляк. [c.99]

    Деароматизированные фракции норийского бензина подвергались дегидрогенизации над катализатором (диаметр трубки — 21 см, длина слоя катализатора — 70 см, количество его — 22,5 г). Палладий на активированном угле (22% палладия) приготовлен по методу акад. Н. Д. Зелинского и М. Б. Туровой-Поляк [21]. [c.133]

    Открытие новых реакций на платиновом катализаторе— реакции гидрогенолиза циклопентановых углеводородов Н. Д. Зелинским, Б. А. Казанским и А. Ф. Платэ [13], реакции дегидроциклизации парафиновых углеводородов Б. А. Казанским и А. Ф. Платэ [14] и дальнейшее плодотворное развитие этих реакций в исследованиях Б. А. Казанского н его [c.163]

    Еще в 1919 — 20 гг. акад. Зелинским Н.Д. была предложена и eя по осуществлению низкотемпературного каталитического крекинга (я 200 С) нефтяного сырья Нй хлориде алюминия. На основе этих работ была создана и испытана опытная установка по получению бензина. Однако в силу существенных недостатков хлорида алюминия как катализатора (сильная коррозия аппаратуры, большой расход катализатора вследствие образования комплексных соединений с углеводородами, периодичность процесса и др.) эта идея не нашла промышленного внедрения. [c.102]

    Н. Д. Зелинским, Б. А. Казанским и А. Ф. Платэ в 1934 г. при попытке выяснить, способно ли к дегидрогенизации в присутствии Р1-катализатора шестичленное кольцо 2-метилбицикло[2.2.1]гептана [135]  [c.122]

    В ходе изучения реакции Св-дегидроциклизации парафинов было проведено широкое обследование различных платиновых контактов в роли катализаторов этой реакции. Оказалось [24], что активности Pt/ , приготовленных по методу Н. Д. Зелинского и М. Б. Туровой-Поляк [66], не зависят в указанной реакции от температуры формирования катализатора в интервале температур —10--[-40 °С. При уменьшении доли металла в [c.199]


    В заключение остановимся на опытах по дегидрогенизации узких бензиновых ( .ракций, выделенных из нефтей, богатых нафтенами шестичленного типа. Эта дегидрогенизация, как показал Н. Д. Зелинский, весьма легко проходит с фракциями, очищенными от ядовитых каталитических примесей, и над платиновыми катализаторами. Автором метода проводятся опыты, имеющие целью добиться осуществления дегидрогенизации с менее ценными и не боящимися отравления катализаторами. В какой мере этою удастся достигнуть и в какой мере окажется рентабельным в этом случае весь процесс получения ароматических углеводородов по Н. Д. Зелинскому, покажет будущее. [c.376]

    Большой вклад в изучение реакций, протекающих при каталитическом риформинге, внесли советские ученые. Так, например, используемый в промышленности США процесс дегидрогенизации циклопарафинов на платиновом катализаторе (плат-форминг) проводится по Н. Д. Зелинскому. Большие работы в направлении изучения реакций риформинга были выполнены [c.151]

    Н. Д. Зелинским была установлена причина быстрого отравления катализатора при каталитических процессах, вызванная отложением обедненного водородом кокса на его поверхности, и был дан способ регенерации отработанных катализаторов путем сжигания углистых отложений в токе горячего воздуха. [c.6]

    Дегидрирование гомологов циклогексана в ароматические углеводороды хорошо известно над платиной, палладием и никелем на окиси алюминия при 280—300 С (реакция Зелинского). Дегидрирование циклогексана происходит также на окисных и сульфидных катализаторах при температурах, близких к 400° С и выше [26]. [c.484]

    Б. А. Казанский, И. Б. Лосик, Н. Д. Зелинский [101] изучали окись алюминия в роли носителя окиси хрома, так как было известно, что окись алюминия является прекрасным носителем для катализаторов, применяющихся при гидрогенизации и дегидрогенизации в качестве промотора для синтеза аммиака на никелевом катализаторе Н. Д. Зелинского и др. Исходя из этого, был приготовлен ряд катализаторов с различным содержанием обоих окислов, испытанный на фракциях синтеза. [c.288]

    Работы американских исследователей не дали и принципиально новых катализаторов ароматизации. Сравнительно свежая публикация о каталитическом облагораживании лигроинов на промотированных щелочами угольных катализаторах [122] с высоким эффектом ароматизации, несомненно, базируется на таких работах, как исследования Н. Д. Зелинского [123] по оценке каталитических свойств активированных углей или Г. А. Рудакова с сотрудниками [124], наблюдавших дегидрогенизацию и необратимый катализ терпенов в присутствии угля. [c.293]

    Дегидрирование деароматизировапных фракций проводилось на налладированноы угле (22%), который был пр -готовлен по методу Н. Д. Зелинского и М. Б. Туроной-Поляк [71. Катализатор характеризовался высокой активностью и ва нем 90% циклогексана превращалось в бензол. [c.71]

    Взятый нами для исследования бензин был получен из нефти (скв, 12) супсинского месторождения (Грузия). Из этого бензина была выделена фракция, выкипающая в пределах 122—150°. Полученная фракция была промыта 75%-ной серпой кислотой, затем 107о-ным раствором соды и дистиллированной водой. После высушивания над хлористым кальцием и перегонки в присутствии металлического натрия в ней были определены показатель лучепреломления, удельный вес и максимальная анилиновая точка. После удаления ароматических углеводородов было проведено каталитическое дегидрирование фракции на платинированном угле (22% платины), приготовленном по Н. Д. Зелинскому и М. Б Туровой-Поляк [16]. Активность катализатора была проверена проведением над ним циклогексана с объемной скоростью [c.87]

    В качестве катализатора применяли платину, нанесенную на активный уголь (22%. Р1). Катализатор готовили по методу Н. Д. Зелинского и. 4. Б. Туровой-Поляк [19]. Для проверки активности катализатора, через него в слабом токе водорода пропускали циклогексан при температуре 300— 305°С. Активность катализатора определяли рефрактометрически по методу Г. С. Павлова [20]. [c.137]

    НОМ древесном угле (22% Р1). Катализатор готовили по методу Н, Д. Зелинского и М. Б. Туровой-Поляк [13]. Активность катализатора определялась дегидрированием циклогексана по Г. С. Павлову [14]. Катализатор 95% циклогексана превращал в бензол. Над указанным катализатором деаро--матизированный бензин пропускали при 300—305°С, со скоростью 6 илЫас в слабом токе водорода. Приемник охлаж- [c.143]

    Следующей стадией исследования являлась дегидрогенизация гидроароматических углеводородов, входящих в состав деароматизированных фракций над платинированным углем. Катализатор был нритотовлеп по методике Н. Д. Зелинского и М. Б. Туровой-Поляк [26], он содержал 7,8% платины и находился ранее в употреблении. [c.167]

    Катализатор-палладий на активированном угле приготовлен по методу И. Д. Зелинского и М. Б, Туровцй-Поляк [19], на этом катализаторе проводилось дегидрирование нс- [c.176]

    Ароматизацией катализом новобогатинского (эмбенского) бензина Зелинский и Шуйкин [5] обнаружили, что в присутствии платинированного угля объемный процент ароматических углеводородов можно увеличить для отдельных фракций от 6 до 19%, а применением никелевого катализатора прирост ароматики можно повысить еще больше. [c.185]

    Затем изомеризат-бензнн подвергался дегпдрогениза-ционному катализу над платинированным углем. Катализатор готовилсн пи Н. Д. Зелинскому и М, Б. Туровой-Поляк [20]. [c.220]

    Н. Д. Зелинского и М. Б. Туровой-Поляк [20]. Активность катализатора проверялась дегидрогенизацией ииклогексана по Павлову [17]. Катализатор переводил 56% циклогексана в бензол. Деароматизированный бензин пропускался над катализатором с объемной скоростью — 0,024 мл/час на единицу объема катализатора при 300—305° в слабом токе водорода. Окончание дегидрогенизации проверялось измерением показателя лучепреломления. [c.226]


    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]

    Впервые конфигурационная изомеризация была описана в 1932 г. на примере стереоизомерных 1,2- и 1,4-ди-метилциклогексанов Н. Д. Зелинским и Е. И. Марголис [2]. Они обнаружили, что 1(цс-формы указанных углеводородов под действием Ы1-катализатора переходят в соответствующие гранс-формы. Последующие исследования показали, что в результате указанных превращений образуются не индивидуальные стереоизомеры, а их смеси, состав которых в большей или меньшей мере приближается к составу термодинамически равновесных смесей. [c.64]

    Значительный вклад в понимание путей. превращения циклоалканов в присутствии нанесенных металлических катализаторов внесли советские ученые, в первую очередь Н. Д. Зелинский, Б. А. Казанский и созданные ими школы. [c.88]

    Превращение циклогексана в бензол над платиновым или палладиевым катализатором было открыто Зелинским [48] в 1911 г. и с того времени эта реакция является объектом многочисленных исследований. Многие работы посвящены механизму реакции, в частности, с точки зрения геометрии каталитических структур. В этом отношении представляют интерес работы А. А. Баландина [2, 3] не только потому, что они объясняют гетерогенные реакции в геометрическом выражении, но и тем, что-они стимулировали развитие многих дальнейших исследований. Обсуждение этих работ не входит в задачу данной главы, однако, можно сослаться на очень хороший критический обзор Трапнеля Вклад Баландина в изучение гетерогенного катализа [45]. [c.172]

    Как в жидкой, так и в паровой фазе в присутствии никеля на кизельгуре в качестве катализатора при 1О0° эта реакция идет с количественным выходом бензол — циклогексана [31]. В отсутствии катализатора циклогексен не изменяется даже нри нагревании в течение 6 час. при 350° [31]. ДиспронорционирЬвание циклогексена открыто Зелинским, который сперва сообщил, что образовавшийся нродукт должен быть новым циклогексеном, так как отношение углерод водород оставалось таким же, каким оно было для исходного вещества. Типичные примеры этого типа диснропорционирования приведены в табл. 9 и 10 [102]. [c.262]

    Эта проблема была успешно разрешена Н. Д. Зелинским (см. стр. 322) и его учениками Б. А. Казанским и А. Ф, Платэ, осуществившими превращение многих предельных углеводородов в ароматические. Так, из гептана С7Н16 при нагревании в присутствии катализатора получается толуол  [c.475]

    Все эти деароматизированные бензины были подвергнуты аналитической дегидрогенизации по Н. Д. Зелинскому над железо-нлатиновым катализатором при температу]1е 300 С и объемной скорости 0,9 после чего образовавшиеся в катализатах ароматические углеводороды извлечены хромато- [c.299]

    Дальнейшее развитие метод выделения и идентификации углеводородов нашел в работах Н. Д. Зелинского, который показал, что при пропускании смеси нафтенов и парафинов над платиновым, палладиевым пли никелевым катализатором при температура около 300° С происходит дегидрогенизация шестичленных нафгенов с образованием ароматических углеводородов [15]. Известно, что реакция эта обратима, и при температурах 120 — [c.79]

    Б. А. Казанский, А. Л. Либермап, А. Ф. Платэ, С. Р. Сер-гиенко и Н. Д. Зелинский [100] изучали влияние способа приготовления окиси хрома на ее активность и время, в течение которого она может работать без регенерации, а также снижение при этом ее активности. Указанные исследователи пришли к выводу, что способ приготовления окиси хрома, несомненно, влияет на ее активность, однако ни один из перечисленных ими способов не дает достаточно стойкого катализатора, и поиски более совершенных контактов должны быть направлены в сторону изучения влияния носителей и активизирующих добавок для окиси хрома. [c.288]

    Из приведенного краткого обзора исследований и публикаций по вопросу ароматизации углеводородов бензиновых и лигроиновых нефтяных фракций видно, что проблема гидроформинга в США решалась во многих направлениях. Однако решение этой проблемы на базе алюмохромовых и алюмомолиб-деновых катализаторов не изменило существенно наши теоретические представления о механизме и возможностях каталитической дегидрогенизации и дегидроциклизации, которые сложились еще в предвоенные годы в результате исследований Н. Д. Зелинского, Б. Л. Молдавского, Б. А. Казанского, Н. И. Шуйкина и других советских исследователей. [c.293]


Библиография для Зелинского катализатор: [c.93]    [c.153]   
Смотреть страницы где упоминается термин Зелинского катализатор: [c.97]    [c.176]    [c.183]    [c.297]    [c.251]    [c.43]    [c.54]    [c.122]    [c.158]    [c.158]    [c.159]    [c.216]   
Синтез органических препаратов Сб.4 (1953) -- [ c.413 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Зелинский



© 2025 chem21.info Реклама на сайте