Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рыбьи жиры

    Этот же исследователь разделил 20 кг рыбьего жира на 50 фракций с помощью надкритического этана при 50°С и давлениях 100—160 кгс/см . Выделение растворенных в газе фракций также производилось повыщением температуры газового раствора до 90°С. Фракции характеризовались числами омыления и иодными числами. Первый параметр связан с молекулярной массой компонентов, а второй — со степенью ненасыщенности фракции. Связь между этими параметрами показана на рис. 55, [c.103]


    Мыло натриевое на рыбьем жире Мыло натриевое на гидрированном кашалотовом жи-ре [c.756]

    Перекись водорода 30%-ная Рыбий жир [c.351]

    Жиры. Жиры, имеющие при обычной температуре жидкую консистенцию, принято называть маслами. Растительные жиры чаще всего относятся к маслам, потому что в большинстве случаев они жидкие, но и некоторые животные жиры (например, рыбий жир) могут быть жидкими. В растительном и животном мире известно около 1300 видов жиров. [c.27]

    Большая часть нефтей вращает плоскость поляризации вправо есть и левовращающие нефти (Зондские острова). Искусственные нефти не обладают оптической активностью. Химическая природа веществ, вызывающих оптическую активность нефтей, интересовала многих исследователей в связи с теориями о происхождении нефти. Некоторые исследователи объясняли оптическую активность нефтей наличием в них продуктов распада холестерина и фитостерина. Холестерин встречается в желчи, рыбьем жире и в яичном желтке, фитостерин — в растительных маслах и жирах. [c.155]

    Для рафинирования растительных масел применяется фурфурол, чаще всего в смеси с керосином. Фурфурол селективно вымывает из масла ненасыщенные глицериды, свободные жирные кислоты и высшие соединения—фосфатиды и токоферол. Полученный рафинат содержит еще некоторое количество ненасыщенных соединений н пригоден для производства быстросохнущих красок и лаков, а также для гидрогенизации. Экстракт можно разделить во второ) экстракционной колонне с помощью керосина на продукт, содержащий жирные кислоты и другие вышеперечисленные соединения, я масло со значительным содержанием ненасыщенных соединений, пригодное для производства лаков. Из рыбьих жиров после двукратной экстракции по этому методу получается витаминная фракция, растворенная в керосине. [c.408]

    Схема промышленной установки дана в 44. Новейшие патенты содержат предложения получения этих витаминов из рыбьего жира пропаном [289]. Исходным сырьем для витамина Е может служить соевое масло [285]. Экстрагированием метанолом, этанолом или фурфуролом получают токоферол, который затем перерабатывается в продукт с высоким содержанием витамина Е. [c.421]

    Исключением является жидкий жир печени трески, который называют рыбьим жиром. В то же время коровье масло — твердое. [c.170]

    По внешнему виду витамин А — кристаллы желтого цвета, темп, плавл. 63—64° С. Растворяется в жирах. Содержится в животной пище в сливочном масле, желтке яйца, молоке. Особенно богат витамином А рыбий жир. С растительной пищей в организм поступают каротиноиды (см. выше). Под влиянием особого фермента в печени и в кишечнике они подвергаются окислительному расщеплению и превращаются в витамин А. Например, при расщеплении Р-каротина по центральной двойной связи (пунктир а в формуле на стр. 323) образуются две молекулы витамина А. Аналогично расщепляются а- и у-каротины. [c.324]


    Холестерин представляет собой бесцветное кристаллическое вещество состава С2,Н4вО, найденное в яичном желтке, печени, крови, мозге, рыбьем жире, молоке, коровьем масле и прочих [c.54]

    Издавна известным и широко применимым свойством пленок является успокоение волн при выливании масла на поверхность бурного моря. Поэтому спасательные суда снабжают рыбьим жиром или минеральными маслами с добавкой стеарина [18]. [c.101]

    Количество образовавшихся изоолеиновых кислот влияет на свойства саломасов и зависит от сырья и условий гидрогенизации. Для растительных масел, содержащих много полиненасыщенных кислот (льняного, подсолнечного), и рыбьих жиров возрастает вероятность образования твердых непредельных кислот в количествах до 40—45%. Поэтому при одинаковой температуре плавления твердых кислот (45—48%) йодное число саломаса из растительных жиров заметно выше (около 70), чем саломаса из животных жиров (около 45), а йодное число подсолнечного саломаса выше, чем хлопкового. Хотя такие изменения в жирнокислотном составе саломасов могут существенно влиять на свойства получаемых пластичных смазок, они, как правило, не учитываются при производстве последних. [c.228]

    Водоупорная замазка. Гашеную известь, (тонко просеянную) смешивают с рыбьим жиром до получения тестообразной массы. [c.292]

    Теории органического происхождения нефти имеют наибольшее число сторонников. Одни из исследователей считают, что нефть образовалась из остатков морских животных, другие—из остатков морских водорослей некоторые видят источник образования нефти в остатках наземных растений. Энглер получил нефтеподобную смесь жидких углеводородов перегонкой рыбьего жира под давлением. Н. Д. Зелинский получил подобные же продукты, разлагая в присутствии хлористого алюминия различные вещества животного и растительного происхождения высокомолекулярные спирты (стерины), жирные кислоты и т. п. Смешанное растительно-животное происхождение нефти было доказано в 1934 г. Трейбсом, который во всех исследованных им 29 образцах нефти нашел производные хлорофилла и гемина (последних в количестве в 20 раз меньшем, чем производных хлорофилла). Можно предполагать, что нефть образовалась частью из животного, частью из растительного вещества. Весьма вероятно, что источником происхождения нефти был морской планктон и морские водоросли, громадные количества которых находятся в морях и океанах. [c.66]

    Получение эмульсий типа М/В и В/М (масло в воде и вода в масле). Берут в пробирку 4 см хлопкового масла или рыбьего жира и добавляют к нему при нагревании очень немного (на кончике шпателя) красителя, судана II или III. После полного растворения красителя охлаждают масло п разливают в две пробирки поровну. Приливают в одну пробирку [c.322]

    Твердые жиры Содержат остатки насыщенных ВКК Животные жиры Рыбий жир (жидк.) [c.597]

    Витамин А1 содержится в рыбьем жире, молоке, яичном желтке. В организме человека витамин А1 образуется из каротина, содержащегося в моркови, помидорах и других продуктах. [c.134]

    Ароматические соединения получили свое название, потому что некоторые из них обладают приятным запахом. Первым из ароматических соединений был выделен бензол в 1826 г. М. Фарадеем, который исследовал конденсат, образующийся в баллонах со светильным газом (полученный пирогенетическим разложением рыбьего жира). [c.200]

    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]

    Мыльные смазки делятся в свою очередь на жировые смазки, изготавливаемые на естественных маслах и жирах и очищенных жирных кислотах (гидрированное растительное масло — саломас, касторовое масло, хлопковое масло, животные и рыбьи жиры, каша-лотный жир, олеиновая кислота, стеариновая кислота и др.), и сии-тетические, изготавливаемые на синтетических жирных кислотах, получаемых при окислении парафинового углеводородного сырья. Мыльные смазки подразделяют также на группы, отличающиеся по катиону металла, входящего в состав мыла. Наибольшее применение имеют кальциевые и натриевые смазки. К ним, в первую очередь, относятся смазки массового назначения солидолы и консталины, представляющие собой индустриальные масла средней вязкости, загущенные кальциевыми (солидолы) или натриевыми (консталины) мылами жирных кислот естественного или чаще синтетического происхождения. [c.247]


    Витамин А содержится в рыбьем жире, печени некоторых животных (в частности, морских), яичном желтке, молоке каротин содержится в свежих овощах, ботве огородных растений, листьях некоторых растений, в фруктах и ягодах. Синтезирован. [c.171]

    Содержатся в рыбьем жире, печени животных, яичном желтке, молоке. [c.174]

    Ваттерман и Перкин показали, что хлопковое масло под давлением 132 ат Еодцрода и ирн темиературе 180° еще не гидрируется. При добавлении же некоторого количества никеля, нанесенного на кизельгур, через два часа обработки в тех же условиях был получен продукт гидрирования с температурой илавления 57—58° С. Рыбий жир (о темп. кип. зоо—400°), иод давлением в 4—Ю аг водорода, давал о выходом в 75% смесь соответственных 5"глеводородов п газ, содержавший Hi, СО и СОз. [c.346]

    Концентрированный триметиламин имеет запах, весьма сходный с запахом аммиака. В малых концентрациях запах триметиламина отвратителен, он слегка напоминает запах рыбьего жира и ворвани. Запах триметиламина очень долго удерживается платьем, кожей и волосами. [c.367]

    Витамин А содержится в коровьем молоке (особенно. летом, когда коровы питаются свежей травой), в масле, в яичном желтке, в рыбьем жире, в большинстве овощей и фруктов. Он является фактором роста, Недостаток его в пище человека вызывает убыль в весе, высыхание роговицы глаза и понижение сопротивляемости организма к инфекциям. [c.570]

    Если в смеси больщинство глицеридов содержит предельные жирные кислоты, то такая смесь оказывается твердой. К этой категории относится жир теплокровных животных, например говяжье сало, щпиг или цыплячий жир. Если же в состав смеси глицеридов входит заметное количество непредельных жирных кислот, то получаются жидкие жиры. К ним относятся рыбий жир и жиры, содержащиеся в растениях, например хлопковое масло. (Правда, в некоторых растениях содержатся твердые жиры, например в некоторых пальмах.) [c.197]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    Еажное промышленное значение данного процесса связано с превращением малоценных ненасыщенных жиров и масел, жидких нри обычной температуре, в твердые насыщенные жиры. Поэтому процесс называют отверждением жиров или их гидрогениза-циеи. Жидкие масла и жиры (хлопковое, кукурузное, соевое, льняное, рыбий жир и др.) состоят из глицеридов ненасыщенных кислот (олеиновой, элеостеарниовой, эруковой и др.). При их гидрировании на никелевом катализаторе двойные связи насыщаются и обрг зуется твердый жир, имеющий небольшое йодное число  [c.507]

    Согласно неско.лько схематическому представлению этих ученых, при кратковременном воздействии разрядов в атмосфере дополнительно вводимого водорода преобладают процессы гидрирования, получившие и практическое осуществление в дезодорации рыбьих жиров (по данным Ивамото [14] рыбий жир, оставленный в течение 3 час. под воздействием разрядов тока напряжением в 10 ООО—20 ООО в, оказался полностью освобожденным от запаха, причем йодное число его понизилось с 166 до 144, а содержание витамина А осталось неизменным). При длительном же воздействии разрядов, а также в атмосфере инертных газов, наоборот, начинают превалировать процессы полимеризации, осуществляемые обычно при напряжении 4300—4600 в. Так как при такой полимеризации, или, как этот процесс называют в Германии, вольтализации> (в англо-романских странах говорят электроионизации ), изменяется но только вязкость, но и сильно падают йодные числа, то Гок [15] предложил для непредельных соединений следующую схему идущей при этом реакции  [c.431]

    Компанией М. В. Келлог Компани разработан процесс экстракции, получивший название Солексол . В качестве растворителя-экстрагента здесь используют пропан (рис. 78), который подается в экстракционную колонку навстречу неэкстрагированной нефти. Верхний продукт подвергается фракционной разгонке в короткой колонке, а восстановленный пропан направляется на рециркуляцию в нижнюю (донную) часть колонки. Экстракт подвергается дальнейшей очистке и освобождается от остаточного пропана паровой дистилляцией. Процесс Солексол рекомендуется применять для извлечения жирных кислот из таллового масла, витамина А из рыбьего жира, витаминов А и О из жира сардин, очистки льняного масла от окрашивающих примесей, соевого масла и др. [c.360]

    Немецкие ученые Г. Гефер и К. Энглер в 1888 году поставили опыты по перегонке рыбьего жира при температуре 400 °С и давлении порядка 1 МПа. Им удалось получить и предельные [c.21]

    Перегонка жиров осуществлялась при 400° С под давлением 10 ат. К обо я ШИ получил искусстБенные нефти, перегоняя рыбьи жиры без давления в присутствии гидросиликага алюминия. Эти нефти по преимуществу состояли из нафтеновых углеводородов. [c.192]

    Например, в рапсовом масле присутствует эруковая кислота СНз(СН2 )7СН=СН(СН2)] СООН в тунговом—элеостеариновая кислота СНз(СН2)зСН=СН—СН=СН-СН=СН(СН2)7СООН в рыбьих жирах—гадолеиновая С дНз,СООН клупанодоновая С2]НдзСООН и другие кислоты. [c.358]

    В. А. Руш и И. Л. Двинянинова [8] изучали гидрирование подсолнечного и других растительных масел с N -катализаторами в присутствии пропилового и других спиртов. Они показали, что подсолнечное масло в этих условиях дает продукт, очень близкий к оливковому маслу. В. М. Пузанов [9] нашел, что при гидрировании рыбьего жира, ворвани и других жиров морских животных в присутствии этилового спирта совершенно уничтожается их отвратительный запах. [c.447]

    Включая натриевые соли алифатических нефтяных сульфокислот, сульфированный синтетический японский воск, сульфированное свиное сало, сул(>-фироваиный ланолип н другие сульфированные животные жиры, рыбий жир п-растительиые масла. [c.206]

    Исключая производство нефтяных ароматических сульфиоованных со единений, солей жи >ных кислот, сульфатироваиных и сульфирован ы.х,, кислот (рыбий жир и олеиновая кислота), изопропилолеата, животных жир.ое и иасел, жира рыб и морских животных. [c.207]

    СНз (СН2),СН = СН (СН2),С00Н и пальмитиновая СНд (СН2)14СООН кислоты. В природных Ж. кроме триглицеридов присутствуют различные примеси свободные жирные кислоты, моно- и диглицериды, фосфатиды, стерины, витамины и др. Известно более 1300 видов Ж- Животные Ж.— твердые вещества (за исключением рыбьего жира), растительные (масла) — жидкие (кроме жира кокосового ореха). В состав животных Ж. входят главным образом насыщенные кислоты — стеариновая и пальмитиновая, в состав растительных — ненасыщенные кислоты. Масла можно превратить в твердые Ж- путем гидрогенизации. Ж- нерастворимы в воде, но могут образовывать с ней стойкие эмульсии. Ж. хорошо растворяются в органических растворителях. Характерной особенностью многих растительных Ж. является способность высыхать с образованием на поверхности, покрытой жиром, твердой эластичной пленки. Высыхание заключается в окислении и полимеризации соответствующих жиров за счет остатков ненасыщенных кислот. При действии на триглицериды водяного пара они омыляются с образованием свободных жирных кислот и глицерина  [c.98]

    Физические свойства жирог зависят от их состава. Чем больший процент иепредельных кислот содержится в жире, тем ниже его температура плавления. Промышленный способ превращения жидких жиров (растительных масел, рыбьего жира) в твердые жиры осуществляется с помощью каталитического гидрирования их над никелевым катализатором  [c.304]

    Витамин А содержится и рыбьем жире, яичном желтке, молоке и других продуктах. Он может поступать в оргагшзм с пиидей либо в готовом виде, либо Б виде каротина — вещества, содержащегося в значительном количестве в моркови, помидорах, масле и обусловливающего их окраску. Каротин в организме рас-щспляется на две молекулы витамина А  [c.462]

    Жиры бывают животные и растительные. Животные жиры — твердые вещества (кроме рыбьего жира) и содержат преимущественно остатки насыщенных кислот, таких как стеариновая С,7Нз5СООН, пальмитиновая С,5Нз СООН, миристиновая С13Н27СООН. Растительные жиры (оливковое, льняное, хлопковое, подсолнечное масло) содержат остатки непредельных карбоновых кислот, таких как олеиновая, линолевая, линоленовая. [c.295]


Смотреть страницы где упоминается термин Рыбьи жиры: [c.100]    [c.104]    [c.315]    [c.316]    [c.317]    [c.322]    [c.245]    [c.167]    [c.267]    [c.170]    [c.170]   
Смотреть главы в:

Введение Пластические массы, Химико-москательные товары -> Рыбьи жиры


Материалы для лакокрасочных покрытий (1972) -- [ c.37 ]

Лакокрасочные материалы (1961) -- [ c.172 , c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Жирные кислоты рыбьего жира

Жиры Липиды рыбий

Жиры рыбьи—сульфатированные

Количественное определение витамина А в рыбьем жире

Производство концентрата витамина А из рыбьего жира методом омыления

Рыбьи жиры и ворвани

Содержание в ткаиях рыб, Рыба минеральных влаги протеина жиров веществ Акула полярная

Технологические показатели производства концентрата витамина А из рыбьего жира

дифенилэтилена кислот рыбьего жира

изопропилстирола кислот рыбьего жира



© 2025 chem21.info Реклама на сайте