Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические низкотемпературные про

    Методом низкотемпературного фракционирования смесь разделяют на этан, этилен, пропан, пропилен и топливный газ. Этан и пропан подвергают дальнейшему крекингу в трубчатых печах в присутствии водяного пара для получения этилена и пропилена. После компрессии и охлаждения газы снова направляют на установку для разделения газов. Ацетилен удаляется путем каталитического гидрирования либо из общего количества нефтезаводского газа, либо только из этиленовой фракции. Разделение пропана и пропилена осуществляется дистилляцией или, если это целесообразно, проведением со смесью ряда реакций. Стоимость установки для производства 90 ООО т этилена и 43 ООО т пропилена из нефтезаводских газов составляет 9,9 млн. долларов, цена 1 фунта этилена и пропилена 0,0241 доллара. [c.9]


    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    Каталитическая конверсия окиси углерода проводится в две ступени. После первой ступени конверсии выходящий при 482 °С конвертированный газ содержит не более 3,1% СО. Охлажденный в котле-утилизаторе до 340 °С и теплообменнике до 240 °С конвертированный газ направляется в конвертор низкотемпературной конверсии окиси углерода. Содержание окиси углерода в газе после низкотемпературной конверсии не превышает 0,5%. [c.13]

    Такая зависимость между реакциями изомеризации и крекинга поясняет ряд характерных особенностей каталитического крекинга, давая возможность провести ряд интересных исследований для объяснения некоторых факторов, влияющих на поведение углеводородов. Тесная зависимость между изомеризацией и крекингом парафинов неоднократно наблюдалась также при низкотемпературных каталитических реакциях [c.128]

    Все приведенные каталитические реакции окисления спиртов в соответствующие карбонильные соединения происходят в органических растворах. Существует совсем немного примеров каталитического низкотемпературного окисления спиртов кислородом в водном растворе. [c.623]


    Проведенный анализ низкотемпературных катализаторов и исследование влияния химического состава на активность и стабильность каталитических низкотемпературных систем Си— Zn—Сг и Си—Zn—Al показал [54], что оптимальное отношение [c.56]

    В случаях ведения каталитических низкотемпературных реакций обогрев предпочтительно вести конденсирующимися парами. При высокотемпературных превращениях в настоящее время начали широко использовать твердые гранулированные и пылевидные теплоносители [c.267]

    При отсутствии ректификационной колонны, обладающей необходимой разделяющей способностью, очистка от примесей осуществляется каталитическим низкотемпературным гидрированием. Схема процесса каталитического гидрирования углеводородов Сз, С4, С5 и бензинов для удаления диеновых углеводородов, ацетилена и его производных приведе-  [c.119]

    Парафин низкотемпературной гидрогенизации. При каталитической гидрогенизации смолы швелевания бурых углей на стационарном сульфидном никель-вольфрамовом катализаторе (27% сульфида вольфрама + 3% сульфида никеля на активированной окиси алюминия) под давлением водорода 300 ат происходит деструктивная гидрогенизация кислородных и сернистых компонентов смолы. При этом битумы, смолы и другие высокомолекулярные сернистые и кислородные соединения превращаются в углеводороды. Эти реакции необходимо проводить при более мягких температурных условиях, в противном случае возможно, что в результате термического разложения асфальтены и смолы будут отлагаться на катализаторе еще до того, как произойдет их восстановительное разложение. Это создает опасность необратимого загрязнения катализатора и постепенного падения его активности. [c.50]

    В низкотемпературной зоне двигателя (коробка приводов агрегатов турбореактивного двигателя, картер поршневого двигателя) температура масла находится в пределах 50—120° С. Здесь масло имеет большую площадь контакта с каталитически активными цветными металлами (в том числе со взвешенными частицами от их износа). В связи с разбрызгиванием и вспениванием масло имеет большую площадь контакта с воздухом. Эти условия способствуют окислению масла и образованию липкой мазеобразной массы темного цвета — шлама, обнаруживаемому в поршневых двигателях в картере, на масляных фильтрах и в других зонах относительно невысокой температуры. [c.164]

    Еще в 1919 — 20 гг. акад. Зелинским Н.Д. была предложена и eя по осуществлению низкотемпературного каталитического крекинга (я 200 С) нефтяного сырья Нй хлориде алюминия. На основе этих работ была создана и испытана опытная установка по получению бензина. Однако в силу существенных недостатков хлорида алюминия как катализатора (сильная коррозия аппаратуры, большой расход катализатора вследствие образования комплексных соединений с углеводородами, периодичность процесса и др.) эта идея не нашла промышленного внедрения. [c.102]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    В случае дальнейшей низкотемпературной ректификации или каталитической переработки фракций, получаемых на установке, в присутствии чувствительных к влаге катализаторов, газы необходимо предварительно осушить (во избежание образования гидратов или льда, а также коррозионного поражения оборудования). Осушку газов (на схеме также не показана) осуществляют методами абсорбции водным раствором диэтиленгликоля или адсорбции, на силикагеле, оксиде алюминия или цеолитах. [c.58]

    При 1200—1600 К осуществляется сжигание сероводорода (высокотемпературная зона — реакционная печь) с образованием серы, ЗОг, воды и ряда других соединений. При 800— 1100 К происходит охлаждение смеси газов с дальнейшим образованием серы, ЗОг, воды (зона средних температур — котел-утилизатор и технологические линии до первого конденсатора серы). При 500—700 К проводят реакции сероводорода и ЗОг на катализаторе (низкотемпературная зона — каталитические реакторы). [c.350]

    Наряду с повышением топливной экономичности применение высокооктановых бензинов способствует снижению металлоемкости двигателя, повышению его мощности и увеличению межремонтного пробега автомобиля. Поэтому в современных условиях экономически целесообразно развивать производство автобензинов высокого качества путем внедрения высокоэффективных вторичных процессов - каталитического риформинга при пониженном давлении, низкотемпературной изомеризации фракции s- fi, производства высокооктановых кислородсодержащих добавок. Реализация этих процессов в нефтеперерабатывающей промышленности в комплексе с переводом автомобильного транспорта на двигатели с повышенной степенью сжатия позволит более эффективно использовать ресурсы нефти. [c.185]


    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]

    Зональное распределение кокса в зерне катализатора выглядит следующим образом. Кокс первой, низкотемпературной зоны (375 °С) окисления локализован в области каталитического действия металла, а второй -высокотемпературной (440-460 °С) - преимущественно на носителе. Перераспределение кокса по зонам окисления можно объяснить деструктивными превращениями (гидрированием кокса) в среде водорода при прогреве, с образованием некоторого количества отложений с небольшим молекулярным весом, которые могут мигрировать в газовую фазу. На рис. 4.3 представлено распределение кокса по зонам во времени, а на рис. 4.4 - изменение активности и доступной поверхности платины при накоплении кокса на катализаторе. [c.52]

    В области низкотемпературной каталитической очистки (при 200 —300 °С) наблюдается ярко выраженный эффект гидрирования, который в области высокотемпературной очистки проявляется слабее, и более заметными становятся процессы изомеризации олефинов. В данном случае мы подразумеваем изомеризацию, нри которой в олефине происходит либо перемещение двойной связи от периферии к центру молекул либо разветвление молекулы олефина, после чего он гидрируется, хотя оба процесса могут протекать и параллельно. Возможно, однако, представить себе такой процесс изомеризации олефина, при котором последний замыкается и цикл нафтенового углеводорода. На подобную изомеризацию указывает С. В Лебедев [161, опи- [c.110]

    В процессе каталитического низкотемпературного риформинга КОГ используется высокоактивный никелевый катализатор, на котором коввертируется десульфурированное углеводородное сырье н пар, подаваемые в отношении около 1 2 в смесь метана, двуокиси углерода и небольшого количества водорода. [c.101]

    Акцепторно-каталитическая (низкотемпературная) поликонденсация [11] имеет большое значение для получения стереорегуляр-ных полимеров. Она проводится в среде органических растворителей (ацетон, дихлорэтан и др.) при температуре от —20 до 50°С в присутствии третичных аминов (акцептор). Роль последних могут выполнять некоторые растворители, например пиридин, диме-тилацетамид. Каталитическое действие аминов заключается в том, что они реагируют с одним или обоими мономерами, превращая их в более активные продукты  [c.80]

    Часть II — Производство неорганических веществ и часть III — Производство органических веществ составляют по 12 печатных листов каждая. Однако мы считаем, что в лекциях нет необходимости излагать весь материал, изложенный во II и III частях. На каждом факультете в качестве примеров целесообразно рассматривать лищь те производства, которые будут наиболее полезны студентам соответствующих специальностей (по выбору кафедры). Важно, чтобы в числе этих производств были описаны основные типы химических процессов и аппаратов высокотемпературные, каталитические, низкотемпературные некаталитические в гомогенных и гетерогенных средах, а также электрохимические. На примерах этих производств должны быть показаны также различные виды технологических схем, представляющих собой взаимосвязь отдельных химических и физических процессов. [c.5]

    В табл. 3.7 приведены показатели процесса ТИП при работе по двум вариантам. Выход продукта в процессе хайзомер ниже, чем в процессах низкотемпературной изомеризации и составляет 98%, а в процессе ТИП — около 97%. Однако, согласно [121], применение процесса ТИП для изомеризации пентан-гексановой фракции обеспечивает повышение выработки бензина с постоянным октановым числом до 85 (ИМ) за счет снижения жесткости каталитического риформинга, что дает также увеличение межрегенерацнонного пробега катализатора риформинга. [c.107]

    Если ректификационная колонна с необходимой разделяющей способностью отсутствует, для очистки газа от примесей осуществляют каталитическое низкотемпературное гидрирование. Схема каталитического гидрирования углеводородов Сз, С4 и С5 в газе и бензине для удаления диенов, ацетилена и его производных приведена на рис. 1.29. Сырье через холодильник и фильтр (для удаления воды) насосом подают в трубчатый реактор, куда поступает водород. С помощью специального приспособлени сырье распределяется по трубам, заполненным [c.79]

    Эти каталитические реакции имеют большое значение при низкотемпературных реакциях окисления, особенно нри явлении загрязнения атмосферы (например, дым в Лос-Анжелосе), и их разъяснение требует элементарного понимания свободнорадикальной химии кислорода. Трудность в изучении этих систем объясняется трудностью изучения самого озона и сложностью промежуточных продуктов. [c.352]

    Товарные алкилаты, получаемые большей частью путем низкотемпературного каталитического алкилирования бутенов изобутаном, являются целиком парафиновыми углеводородами. В противоположность бензинам прямой гонки и крекинг-бензинам парафиновые углеводороды алкилатов сильно разветвлены и представлены, главным образом, триметилпента-нами. Как показывает табл. I, состав их зависит от катализатора, примененного для алкилирования (Глазго и др. [3]). [c.48]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    Это отщепление является реакцией, обратной алкилированию ароматических углеводородов олефинами. Последняя — хорошо и шестная низкотемпературная реакция над кислыми катализаторами, интерес к которой в последнее время вновь возрос в связи с ее механизмом, особенно над катализаторами Фриделя-Крафтса [6]. Действительно, общая теория замещенпя ароматических углеводородов в кислой среде связана с механизмом каталитического крекинга ароматических углеводородов. [c.129]

    Часто сообщалось, что катализ хлористым алюминием низкотемпературного алкилирования ароматических углеводородов обычно сопровождается индукционным периодом [33, 209]. Однако после образования небольшого количества алкилата получается жидкий комплекс ( красное масло ) — прекрасный растворитель для хлористого алюминия. После появления такой комплексной жидкой фазы реакция протекает быстро. В заводской практике обычно готовят этот жидкий комплекс заранее и для каталитических реакций применяют хлористый алюминий, растворенный в этом комплексе (см. гл LVII). [c.432]

    При низкотемпературной изомеризации на катализаторе Рт — А12О3 — С1, учитывая весьма жесткие требования к содержанию вышеназванных примесей в сырье и водороде (табл. 3.3), в схеме установки предусматривают блоки каталитической очистки сырья и водородсодержащего газа с последующей осушкой на молекулярных ситах. Подобные усложнения технологической схемы и соответственно увеличение эксплуатационных и капитальных затрат оправдываются значительно более высокими показателями процесса. [c.95]

    Изомеризат, полученный в процессе низкотемпературной изомеризации гексановой фракции на катализаторе НИП-74 [87], был подвергнут ректификации с выделением изогексановых фракций с октановыми числами 83,9 85,3 86,8 и 91,4 (ИМ) - табл. 6.5 и 6.6. Для приготовления опытных образцов бензинов кроме изогексановых фракций использовались бензин каталитического риформинга, полученный в условиях жесткого режима на катализаторе КР-104, изопентановая фракция и алкилат (табл. 6.5). Оказалось, что добавление изомеризата улучшает октановую характеристику головной фракции и обеспечивает равномерность распределения октановых чисел по фракциям бензина (табл. 6.7). Приготовленные образцы бензинов исследовались по ГОСТ 2084-77, некоторым показателям квалификационной оценки автомобильных бензинов и были подвергнуты дорожным- детонационным испытаниям по ГОСТ 10373-75. [c.162]

    Влияние состава автобеизина на структуру НПЗ показано в табл. 6.22. Для производства бензина марки АИ-93 требуется все ресурсы прямогонного бензина подвергать каталитическому риформированию с последующей переработкой его в процессе селекториформинга для получения бензина с октановым числом 100 (ИМ), а также включить в схему завода процесс низкотемпературной изомеризации пентан-гексановой фракции с рециркуляцией и-пентана. [c.184]

    В периодической литературе приводится несколько механизмов низкотемпературной полимеризации изобутилена под действием галогенидов металлов и других каталитических систем. Наиболее широкое признание приобрела ион-карбониевая теория полимеризации изобутилена. Согласно этой теории чистый изобутилен не полимеризуется одними галогенидами металлов в течение длительного времени. Для того чтобы прошла быстрая реакция, необходимо в системе иметь третий компонент — соинициатор, являющийся донором протонов [5]. [c.328]

    В. С. Гутыря высказал предположение о связи установленной закономер-пости с воздействием на нефть природных алюмосиликатов (глип), залегающих на пути ее миграции или ограничивающих толщи нефтецосных пород. Влияние алюмосиликатов на свойства нефтей отмечал уже И. М. Губкин, однако связывал его только с адсорбционной снособностью глин. В частности, низкое содержание смол в нефтях Сураханского месторождения И. М. Губкин объяснил наличием в местах залегания большого количества природных глин и адсорбцией на глинах смолистых компонентов нефти. В. С. Гутыря на основании изучения каталитических свойств активированных и природных алюмосиликатов пришел к выводу о возможности реализации каталитической способности глин при контакте с нефтью в природных условиях. Наиболее вероятной представлялась возможность протекания в условиях залегания нефтепасыщенных алюмосиликатных пород медлеттого низкотемпературного жидкофазного крекинга и процессов гидрирования ароматических углеводородов. [c.8]

    С. В. Лебедев и И. А. Виноградов-Волжинский 111) сообщают о проведенных в 1911 г. опытах Л. Уббелоде и А. Воронина, Наблюдавших реакции каталитического крекинга при нагревании нефтяного масла с фуллеровой землей до температуры около 200 °С, и собственных исследованиях, в которых установили, что распад диамиленов под влиянием активированного флоридина начинается уже при 65—70 °С, заметно протекает при 90, а при 165—170 °С происходит интенсивный распад углеводо])одов. С. В. Лебедев и Г. Г. Коблянский [121 показали, что полимерные формы изобутилена под влиянием флоридина заметно распадаются уже при 130 °С. С. В. Лебедев и И. А. Лившиц [131 наблюдали распад триизобутшсена даже нри 50 °С в присутствии того же активированного флоридина. Низкотемпературный [c.154]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Низкотемпературная коррозия шеевиков и дымовых труб печей продуктами сгорания топлива. При сжигании сернистого топлива в топочных газах появляется значительное количество серного ангидрида, сероводорода, диоксида углерода, водяных паров, кислорода и других компонентов, вызывающих интенсивную низкотемпературную коррозию трубчатого змеевика И дымовой трубы. Особенной агрессивностью коррозионного воздействия отличается серный ангидрид. Его образование зависит от используемого для сжи1 ания топлива избытка воздуха. В случае неправильной эксплуатации горелок или при нарушении герметичности топки увеличивается поступление воздуха в печь, что приводит к возрастанию коэффициента избытка воздуха до очень высоких значений (1,5—2,0) и усилению коррозии. Активность влияния серного ангидрида на металл значительно увеличивается при каталитическом действии пятиоксида ванадия в присутствии водяного пара, подаваемого на распыление топлива и образуемого при его сжигании. [c.155]


Смотреть страницы где упоминается термин Каталитические низкотемпературные про: [c.166]    [c.14]    [c.52]    [c.87]    [c.95]    [c.144]    [c.46]    [c.93]    [c.211]    [c.284]    [c.359]    [c.252]   
Крекинг нефтяного сырья и переработка углеводородных газов Изд.3 (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические низкотемпературные про цессы переработки нефти

Низкотемпературная каталитическая очистка

Улучшение низкотемпературных свойств газойлей каталитическим гидрированием



© 2025 chem21.info Реклама на сайте