Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал соединения, комплексные

    Для получения ванадия, ниобия и тантала их природные соединения сначала переводят в оксиды либо в простые или комплексные галиды, которые далее восстанавливают металлотермическим методом  [c.540]

    Поскольку содержание ниобия и тантала в природных рудах мало, прежде всего руды обогащают различными методами (гравитационным, магнитным, флотационным и химическими). Полученные концентраты перерабатывают, отделяют вначале соединения W, Sn, Рс , Мп, РЬ и другие примеси, а затем разделяют соединения Nb и Та, используя для этого различные методы дробную кристаллизацию комплексных фторидов, ректификацию галогенидов, селективную экстракцию органическими растворителями и др. [c.515]


    Ниобий и тантал — еще более пассивны и реагируют только с азотной кислотой, содержащей НР, или с царской водкой. Разрушение пассивирующих пленок идет, по-видимому, за счет образования комплексных соединений типа Н2[МеР,] в присутствии плавиковой кислоты. В результате растворения получаются соединения ниобия (V)  [c.93]

    Разделение ниобия и тантала. Близость физикохимических свойств Nb и Та и их соединений создает большие трудности в разработке метода промышленного их разделения. До недавнего времени единственным промышленным способом была дробная кристаллизация комплексных фторидов ниобия и тантала. Этот способ, предложенный еще в 1866 г. Мариньяком, в настоящее время практически вытеснен жидкостной экстракцией и другими способами, связанными с хлорным методом переработки тантало-ниобиевого сырья (ректификация пентахлоридов). [c.79]

    Азотная кислота, которая одновременно является и окислителем, применяется для растворения горных пород, минералов, металлов, сплавов и т. д. Растворение проб в азотной кислоте ускоряется нагреванием, а также прибавлением соляной, бромистоводородной и фтористоводородной кислот, которые активируют действие азотной кислоты или связывают примеси в комплексные соединения. Добавление фтористоводородной кислоты способствует ускорению растворения объектов на основе или с примесями тантала, ниобия, вольфрама, титана, кремния. Фторид-ионы после окончания растворения можно маскировать борной кислотой или удалять выпариванием растворов [402]. [c.234]

    Фотометрические методы определения тантала. П н р о-гал ловый метод определения содержания тантала основан на образовании окрашенного в желтый цвет комплексного соединения тантала с пирогаллолом в солянокислом или сернокислом растворе. Определению тантала [c.152]

    Хлорирование в настоящее время широко используют в технологии редких металлов для перевода рудных концентратов и некоторых промежуточных продуктов технологии в хлориды, удобные для последующего разделения, очистки и получения металлов. Хлорирование является основным методом, используемым в технологии титана. Хлорируется значительная доля рудных концентратов циркония и гафния, тантала и ниобия, редкоземельных элементов и др. Фторирование применяют в-значительно меньшем масштабе, главным образом для получения фторидов редких металлов из окислов или вторичных металлов с целью их металлотермического или электрохимического восстановления. Хлорирование и фторирование широко используют при переработке комплексных руд и различного рода сложных композиций окислов или металлов, так как различие в температуре плавления и температуре кипения хлоридов и фторидов редких металлов позволяет успешно разделять их и осуществлять их тонкую очистку. На основе процессов хлорирования и фторирования созданы короткие, изящные технологические схемы. Благодаря высокой реакционной способности хлора и фтора процессы хлорирования и фторирования практически осуществляются нацело, и степень перевода исходных материалов в хлориды и фториды колеблется между 98 и 100%. Их огромным преимуществом перед другими методами вскрытия и переработки рудных концентратов и других соединений редких металлов является отсутствие сточных вод и сброса в атмосферу. Создание технологических схем без водных и атмосферных сбросов является эффективной мерой по охране природы. [c.65]


    Для разложения пиросульфатных плавов минералов, содержащих редкоземельные металлы, ниобий и тантал, целесообразно пользоваться щавелевой кислотой, с которой элементы группы редких земель образуют труднорастворимые оксалаты, а ниобий и тантал — растворимые комплексные соединения Щавелевая кислота не препятствует последующему осаждению едким натром. Согласно имеющимся указаниям, пиро-суль атный плав растворяют в щавелевой кислоте и после нагревания в продолжение соответствующего промежутка времени отделяют оксалаты редкоземельных металлов фильтрованием. Титан определяют в фильтрате колориметрическим методом по реакции с перекисью водорода . После этого раствор можно обработать серной кислотой, выпарить для разрушения щавелейой кислоты, разбавить раствором винной кислоты и продолжать анализ, как указано в п. 1. [c.671]

    В. Ф. Барковский и М. Н, Забоева [357] для определения ниобия в препаратах тантала, поскольку тантал подобных комплексных соединений не образует. [c.144]

    Некоторые а-оксикарбоновые кислоты (винная, лимонная, молочная, триоксиглутаровая кислоты) образуют с ионами ниобия (V) и тантала (V) комплексные соединения. [c.188]

    Для других пентагалогенидов ниобия и тантала образование комплексных производных не столь характерно. Однако некоторые из подобных соединений известны. Примерами могут служить K[Nb l6] (т. пл. 396°С) и s[Ta le] (т. пл. 548°С). Взаимодействие металлического кальция с расплавом Ка[ТаС1б] (т. пл. 470° С с разл.) используется иногда для получения тантала. [c.473]

    По химической природе пентагалиды ванадия, ниобия и тантала вляются типичными кислотообразователями. При действии воды они подвергаются гидролизу. Пентафториды склонны к образованию комплексных анионов. Кроме чисто галогенных соединений для ванадия и ниобия известны смешанные галогено-кис-лородные соединения УОГ3 и ЫЬОГз также ковалентной природы. [c.278]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    При производстве ниобия и тантала прежде всего руды обогащают (фави-тациоииым, магнитным, флотационным и химическими методами). Полученные концентраты перерабатывают, отделяют соединения W, Sn, Fe, Mn, Pb и другие примеси (обычно их переводят в галогениды), затем разделяют соединения Nb и Та. Для этого используют различные методы дробную кристаллизацию комплексных фторидов, ректификацию галогенидов, селективную экстракцию комплексных фторидов органическими растворителями н др. [c.498]

    Фториды и оксофториды ниобия и тантала ЭРз и ЭОРз обо уют многочисленные комплексные соединения содержащие анионы (ЭР,т , п 6,7 (для тантала также 8) и (ЭОРя , п-4. 5, 6. Они получаются при взаимодействии ЭРз или ЭОРз с фторидами щелочных металлов. Можно 1ЮС1Юльзо-ваты а и реакциями типа  [c.505]

    Комплексные фториды известны для большинства высокозарядных ионов этой группы, а в некоторых случаях играют важную роль в технологии (при разделении ниобия и тантала в виде соединений КаЕТаР ] и K2[NbOp5J, при электролитическом получении А1 из расплавов криолита К аз[А1Рб] и т. д.). Такие металлы, как титан, ниобий, тантал, хорошо сопротивляются действию кислот. Однако их можно растворить в смеси азотной и плавиковой кислот, причем первая играет роль окислителя, а вторая — комплексообразователя. [c.83]

    Способы получения. Как соли, так и чистые металлы данной подгруппы в лаборатории получаются теми же методами, которыми пользуются в промышленности. В основном это обстоятельство объясняется отсутствием руд, пригодных для получения из них металлов, солей или окислов без предварительного обогащения. Основным сырьем для добывания различных соединений элементов подгруппы ванадия служат комплексные руды, например, для ванадия карнотит-уранованадат калия, ванадинит-хлорванадат свинца и др., шлаки железных руд, зола некоторых сортов каменных углей для ниобия и тантала —танталит, колумбит и лопарит. Исключением является, пожалуй, сырье для получения ванадия — патронит, который может быть назван собственно ванадиевой рудой. [c.306]

    Комплексные фториды известны для большинства высокозарядных ионов этой группы, а в некоторых случаях (при разделении ниобия и тантала в виде соединений КгТаР и КаНЬОРз и т. д.) играют важную роль в технологии. Известно, что такие металлы, как титан, ниобий, тантал, хорошо сопротивляются действию кислот. Однако их можно растворить в смеси азотной и плавиковой кислот, [c.62]


    Органические комплексные соединения. Наиболее важное органическое комплексное соединение ниобия — соединение с таннином. Это оранжевое вещество выпадает из нейтрального или очень слабокислого раствора в избытке таннина. Аналогичное соединение тантала (лимонно-желтое) выпадает из слабокислого раствора в интервале pH 3—4. Соединения не имеют определенного состава, но таннин количественно осаждает из растворов ниобиевую и танталовую кислоты. Осадки прокаливают до NbaOj и TajOg. Различие в условиях выделения танталово-го и ниобиевого соединения используется при разделении Та и Nb в количественном анализе. [c.52]

    Переработка концентратов. Переработка концентратов на соединения ниобия и тантала слагается из двух стадий 1) разложение рудных концентратов 2) разделение соединений и очистка их от примесей. Способы переработки сырья зависят от типа исходных концентратов. Исходные материалы для получения Nb и Та окислы, комплексные фториды (КгНЬр7, KjTaFi), хлориды. Продукт, непосредственно получаемый из рудных концентратов,— феррониобий, применяющийся для присадок ниобия в стали или в отдельных случаях перерабатываемый на ниобий. [c.66]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]

    Фтористоводородная кислота осаждает Ри(1У) из кислых растворов в виде Рир4-2,5Н20. Этим методом можно отделить плутоний от шестивалентного урана, железа, циркония, тантала и других элементов, образующих с фтор-ионом растворимые комплексные соединения. Метод не нашел широкого примене- [c.294]

    Для отделения тяжелых щелочных металлов (особенно для селективного отделения цезия) перспективны разнообразные неорганические нонооб-менники (см. гл. 6) нерастворимые гетерополикислоты и их соли [14], комплексные цианиды некоторых элементов и соединения типа фосфатов (15], арсенаты, молибдаты и волы1)раматы четырехвалентных элементов (цирконий, титан, олово). Для селективной сорбции нонов натрия был приготовлен ионообменник на основе гидратированного пентоксида сурьмы [16, J7], Ионы натрия сорбируются из 6—12 М НС1 никакие другие элементы (кроме тантала и фторидов) не сорбируются. [c.158]

    Вольфрам, тантал и ниобий образуют кислотные ангидриды ШОз, Та Об, МЬзОб, которые подобно кре1Мнйвой кислоте реагируют с гидробки-сяыи щелочных металлов, образуя растворимые вольфраматы, танталаты и ниобаты. В противоположность кремневой кислоте они образуют комплексные соединения с щавелевой, винной и с другими органическими оксикислотами. [c.632]

    Адсорбционные комплексные соединения земельных кислот с таннином получаются также при действии последнего на растворы щавелевокислых ИЯ1И виннокислых комплексных соединений тантала и. ниобия. Таитаяовый осадок имеет красивую окраску цвета серы (а не светлобурую, как указано в некоторых руководствах) всякая другая окраска указывает на примеси (титан, железо) ниобиевый осадок более объемист, чем предыдущий, и от. личае1ся своей яркой алой окраской. [c.637]

    HF + HN03 Сплавы вольфрама, молибдена, тантала, циркония, силикаты, ферромолибден Образуются фторидные комплексные соединения [c.45]

    Для определения ниобия и для определения тантала известен пока только один амперометрический метод, основанный на образовании комплексного соединения с пирокатехином. Последний, так же как и другие фенолы, окисляется на платиновом электроде, давая площадку диффузионного тока в пределах потенциалов от +0,5 до +0,7 в (Нас. КЭ). И. А. Церковницкая и Н. Г. Комолова воспользовались этим обстоятельством для титрования ниобия и тантала при различных pH ниобий — при pH около 8, тантал — при pH около 3. Оба элемента могут присутствовать в растворе в виде оксалатных комплексов. Титан, который очень часто сопутствует ниобию и танталу в минеральном сырье, тоже реагирует с пирокатехином, поэтому его маскируют комплексоном 1П. [c.274]


Смотреть страницы где упоминается термин Тантал соединения, комплексные: [c.486]    [c.345]    [c.587]    [c.19]    [c.432]    [c.556]    [c.375]    [c.520]    [c.82]    [c.427]    [c.268]    [c.38]    [c.56]    [c.58]    [c.163]    [c.241]    [c.153]    [c.174]    [c.163]    [c.427]   
Основы общей химии Т 1 (1965) -- [ c.473 ]

Основы общей химии том №1 (1965) -- [ c.473 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте