Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал поверхности поляризационный

    Потенциал незащищенной стали в сероводородсодержащей среде (На 8 - 1200 мг/л) составляет -650 мВ. При нанесении алюминиевого, кадмиевого, никелевого покрытия происходит облагораживание потенциала во времени вследствие образования поверхностных пленок, формирующихся в присутствии сероводорода, при зтом потенциал поверхности покрытия составляет, мВ алюминиевого —570, никелевого +280, кадмиевого —410 и цинкового —750. Ход поляризационных кривых для стали с покрытиями свидетельствует о значительном торможении катодного и анодного процессов с преимущественным анодным контролем. [c.86]


    Зависимость скорости какой-либо электрохимической реакции на границе раздела фаз от потенциала описывается поляризационной кривой ток — потенциал 1 U). При построении таких кривых целесообразно относить силу тока к геометрической площади поверхности электрода [c.52]

    Стационарный (естественный) потенциал подземного металлического сооружения независимо от его значения не является показателем опасности или защищенности сооружения от почвенной коррозии. Катодная поляризация сооружений должна осуществляться таким образом, чтобы создаваемые на всей их поверхности поляризационные потенциалы были не менее значений, указанных в табл. 32, и не более значений, указанных в табл. 33. [c.44]

    Однако вскоре было выяснено, что такой механизм действия окисно- марганцового электрода не согласуется со многими опытными данными. Так, например, величины потенциала и поляризационной е.мкости зерна двуокиси марганца зависят от величины контактной поверхности и растут по мере увеличения последней, т. е. зерно двуокиси марганца работает только в месте контакта. Это обстоятельство, а также ряд других фактов служат опровержением теории Леблана о посылке электродом в раствор четырехвалентных ионов марганца. [c.43]

    При выводе было принято, что по крайней мере в некотором интервале потенциалов (например, 2,7—3,2 в, рис. 1), где скорость подъема потенциала на поляризационной кривой уже замедлена, состояние поверхности можно рассматривать как относительно стабильное (в соответствии с экспериментальными условиями, используемыми автором). Предполагалась также квазиоднородность при расчете поверхностной концентрации активного промежуточного продукта реакции (здесь ОН). Уравнения (4) и (5) выведены для случая, когда С а1 < а1 [H30 ], где означает константу скорости А в уравнении (1), умноженную на экспоненциальный член того же уравнения, который содержит ф. Другие случаи различных соотношений между величинами а, а1И а1 также обсуждены [c.344]

    Переход от электрохимически активного к относительно неактивному состоянию (когда стенки трещины должны передвигаться но мере того, как движется вершина и трещина увеличивается) должен отразиться на величине тока растворения. Растворение с первоначально обнаженной поверхности, подвергаемой воздействию соответствующей коррозионной среды, связано с протеканием тока относительно высокой плотности с течением времени этот ток будет падать, если происходит образование иленки. В условиях очень высоких скоростей падения тока вряд ли возможно значительное растворение и поэтому, вероятно, эти условия не могут способствовать растрескиванию, в то время как очень низкие скорости падения тока, вероятно, в большей степени вызывают питтинг, чем растрескивание. Растрескивание должно, вероятно, происходить прн промежуточных скоростях падения тока. Полученные результаты подтверждают это [20, 22], но еще нельзя предсказать, какими количественно должны быть скорости падения тока, хотя считается, что они могут зависеть от потенциала, обусловленного конкуренцией процессов растворения и пленко-образования. Наиболее удобный способ определения области потенциалов, в которой, вероятно, имеет место коррозионное растрескивание, состоит в построении потенциодинамических поляризационных кривых. Если первоначальный потенциал поверхности, свободной от пленки, быстро (приблизительно 1 В/мин) изменять в пределах соответствующей области, величина токов будет указывать области потенциалов, в которых, вероятно, проявляется относительно высокая анодная активность. Быстрое прохождение заданного интервала потенциалов позволяет уменьшить скорость образования пленки. Таким образом, изме- [c.236]


    М.меется много опубликованных статей, относящихся к электрохимическим исследованиям влияния ингибиторов и поверхностно активных веществ на процесс корразии при использовании потенциостата [95, 96]. Адсорбция органических и неорганических ионов на поверхности металла имеет очень важное значение, так как, изменяя заряд поверхности, этот процесс соответственно изменяет и потенциал поверхности. Некоторые подробности использования поляризационной техники для изучения специфического влияния адсорбционных процессов на кинетику анодных и катодных реакций описываются в работах [95, 96]. [c.611]

    Поэтому наряду с потенциостатическим применяется также импульсно-гальваностатический метод [29]. Сущность последнего метода заключается в том, что через электрохимическую ячейку пропускаются одиночные импульсы постоянного тока разной амплитуды и длительности, а потенциал электрода измеряется в обесточенном состоянии после прекращения прохождения поляризующего тока. По осциллограммам тока и потенциала строятся поляризационные кривые. В момент прекращения тока причины, вызывающие поляризацию электрода, исчезают не мгновенно, а постепенно, в течение сравнительно длительного промежутка времени. Измерение потенциала через 10 -н 10" сек дает возможность определить экстраполяцией на момент размыкания собственную величину потенциала электрода без скачка потенциала, зависящего от омического сопротивления слоя раствора между поверхностью электрода и концом измерительного капилляра, а также сопротивления возможной пленки на поверхности электрода. Омический же скачок потенциала исчезает за время 10 сек после прекращения поляризующего тока. Время спадания потенциала электрода может определяться величиной от 10 сек до нескольких минут. Поляризуя электрод токами различной величины и измеряя его потенциал в момент выключения тока, можно получить гальваностатическую кривую. [c.33]

    Для исследования состояния поверхности металлических образцов и процессов адсорбции на ней, а также свойств окисных и защитных изоляционных пленок на поверхности металла применяют емкостно-омический метод (рис. 358). Емкость и сопротивление исследуемого электрода определяют компенсационным методом — подбором соответствующих величин емкости и сопротивления Из на мостике переменного тока с осциллографом в качестве нуль—инструмента. В электрохимических исследованиях этот метод сочетают с поляризационным методом, измеряя импеданс (полное активное и реактивное сопротивление цепи переменного тока) при различных значениях потенциала исследуемого электрода (см. 166). [c.465]

    Поляризационные измерения показывают, что в общем случае торможение электродных реакций на изолированном металле заметно выше, чем на свободной поверхности электрода. Однако такое сопоставление не имеет смысла, поскольку остаются неопределенными общая активная площадь на изолированной поверхности металла, а также величина падения потенциала на изоляционном слое. [c.23]

    В чистой влажной атмосфере без активатора и защитной пленки поляризационная диаграмма может быть представлена серией анодных и катодных поляризационных кривых. При внесении образца во влажную атмосферу (при i = 0) начальный потенциал железа оказывается равным 0,15—0,25 В, т. е. находится в области пассивного состояния. По мере возникновения адсорбционных слоев влаги первичная окисная пленка на железе разрушается, поверхность металла активируется, а потенциал смещается в отрицательную область (вдоль пунктирного участка анодных кривых К, V t [c.37]

    Поляризационный потенциал стальных трубопроводов измеряют на специально оборудованном контрольно-измерительном пункте (рис. 6.6). Датчик электрохимического потенциала 2 представляет собой стальную пластину размером 25 х 25 мм, изолированную с одной стороны и укрепленную этой стороной на электроде сравнения 3. Электрод сравнения с датчиком устанавливают на уровне оси трубопровода I на расстоянии 10-15 см от его поверхности. Контрольные проводники 4 от электрода, датчика и трубопровода выводят на поверхность земли под ковер. [c.129]

    После небольшого снижения тока (участок БВ) устанавливается независимость анодного тока от потенциала в некоторой области потенциалов (плато на поляризационной кривой, участок ВГ). Растворение металла в области плато происходит в диффузионном режиме подтверждением этого является то, что увеличение скорости перемешивания раствора приводит к соответствующему возрастанию тока в области участка ВГ. При этом металл при потенциалах участка ВГ покрыт слоем продуктов растворения (скорее всего оксидно-солевым слоем). Толщина этого слоя увеличивается с повышением потенциала в области участка ВГ. Поверх слоя твердых продуктов реакции на аноде находится слой раствора с высокой концентрацией растворенных продуктов анодной реакции, так называемый вязкий слой. Растворение металла в диффузионном режиме приводит к преимущественному растворению микровыступов и сглаживанию шероховатости поверхности. Наличие анодной пленки на поверхности металла подавляет проявление структурной неоднородности поверхности и различия в скорости растворения различных микроучастков. Эти два фактора и являются причиной полирования металла. [c.76]


    Величина (й г/ рН) , выражающая долю емкости двойного слоя в поляризационной емкости электрода, называется изоэлектрическим сдвигом потенциала. Она может быть получена экспериментально на электроде с сильно развитой поверхностью путем замены одного раствора на другой с иным значением pH при разомкнутой цепи (метод изоэлектрических сдвигов потенциала) или же путем потенциометрического титрования в изоэлектрических условиях (при помощи дополнительного стеклянного электрода). [c.69]

    Стационарный потенциал определяется взаимным расположением поляризационных кривых парциальных процессов. Так как скорости отдельных процессов зависят от состояния поверхности электрода, то также является функцией состояния поверхности металла в отличие от равновесного потенциала. Равновесный потенциал водородного электрода не зависит от природы металла. Определение стационарного потенциала и тока саморастворения удобно проводить, представляя поляризационные кривые в полулогарифмических координатах (рис. 182) .  [c.349]

    Итак, теоретический расчет и экспериментальные данные показывают, что при оценке величины /,., в определенных условиях можно пользоваться точкой пересечения поляризационных кривых растворения основного металла и выделения водорода на включении. Если растворению подвергается лишь основной металл, то ток его саморастворения можно определить по скорости выделения водорода, которая складывается из тока выделения водорода на основном металле и на включении при стационарном потенциале. Токи выделения водорода, а следовательно, и / можно рассчитать, зная площади поверхностей основного металла и включения 5 и зависимости скорости выделения водорода на них от перенапряжения. В самом деле, предположим, что скорость выделения водорода на основном металле и включении подчиняется уравнению Тафеля (см. уравнение (47.6)] с одинаковым коэффициентом Ь, но с различными значениями а, причем а >ав т. е. включение обладает меньшим перенапряжением водорода. Одинаковое значение потенциала на основном металле и на включении означает, что [c.364]

    В присутствии спиртов или кислот жирного ряда т] возрастает в области адсорбции этих веществ (рис. 137). После их десорбции 1], lg I — кривые в растворах кислоты с добавкой органического вещества и без добавки совпадают, причем потенциал десорбции, полученный из поляризационных измерений, хорошо совпадает с данными электрокапиллярных кривых или кривых дифференциальной емкости. Аналогичным образом повышают перенапряжение органические катионы, например катионы тетрабутиламмония. Эти катионы также десорбируются с поверхности, но при более отрицательных потенциалах, вследствие чего их эффект наблюдается в более широком интервале потенциалов (см. рис. 137). [c.271]

    Стационарный потенциал определяется взаимным расположением поляризационных кривых парциальных процессов. Так как скорости отдельных процессов зависят от состояния поверхности электрода,то Фс также является функцией состояния поверхности металла в отличие от равновесного потенциала. Равновесный потенциал водородного электрода не зависит от природы металла. [c.366]

    Помимо природы металла, на расположение парциальных поляризационных кривых сопряженных процессов влияет также состав раствора. Присутствие специфически адсорбирующихся ионов, влияя на г1 1-потенциал, тем самым изменяет скорости катодных и анодных процессов и может приводить к смещению стационарного потенциала и к изменению тока саморастворения металла. Во многих случаях ионы раствора прочно хемосорбируются на поверхности металла, 374 [c.374]

    Поляризационные кривые локального элемента показаны на рис. 190. Вследствие различия в поверхностях основного металла и включения плотности тока на этих участках не одинаковы, поэтому по оси абсцисс отложен логарифм силы тока. Величина характеризует максимальный ток локального элемента. Однако из-за конечного сопротивления раствора Я потенциалы анода и катода отличаются на омическое падение потенциала в растворе Аср = /Я и реальный ток локального элемента /л.э может оказаться меньше, чем /л.э . Для определения /л.э необходимо знать Я и затем найти такое значение силы тока, при котором разность потенциалов анода и катода Фк равна омическому падению потенциала  [c.378]

    При электрохимическом механизме нет необходимости в прямом соударении частиц окислителя и восстановителя между собой окислительные и восстановительные процессы протекают раздельно с участием металлической поверхности, которая принимает электроны от восстановителя (в данном примере от атомов цинка) и передает их окислителю (ионам водорода). Поляризационные кривые, отвечающие парциальным реакциям (I) и (И) на цинковом электроде, приведены на рис. 181. Равновесный потенциал цинкового электрода в растворе соли цинка более отрицате- [c.348]

    Одновременно с этим потенциал диффузионной стороны также становится более отрицательным. Такой переход водорода н передача потенциала с поляризационной стороны на диффузионную возможны в том случае, если образующийся в процессе разряда атомарный водород не успевает покинуть поверхность электрода. Его ко1щентрация увеличивается по сравнению с равновесной, и он начинает проникать в глубь палладия, достигая диффузионной стороны мембраны. Появление избыточного водорода на диффузионной стороне сдвигает ее потенциал в отрицательном направлении, что также указывает на медленное протекание рекомбинации. Однако, по Фрумкину, иереиапря-жение водорода на палладии нельзя приписать только замедленности рекомбинации. Если поляризовать мембрану малым током до постоянного значения потенциала, а затем выключить ток, то для каждой из ее сторон получаются различные кривые спада потенциала. На поляризационной стороне непосредственно после выключения тока наблюдается резкое падение перенапряжения, которое затем уменьшается значительно медленнее. На диффузионной стороне проявляется только второй участок, т. е. после выключения тока потенциал постепенно сдвигается к его разновесному значению в данном растворе. Быстрый спад перенапряжения объясняется замедленностью разряда, медленный спад — удалением избыточного водорода. [c.418]

    Эффективность действия анодной защиты сложных annapd TOB может быть обеспечена лишь в том случае, если сочетание таких факторов, как поляризационная кривая, расположение вспомогательных электродов и электропроводность среды, обеспечат поддержание потенциала поверхности металла в области [c.34]

    При изменении потенциала поверхности стали до 0,3— 0,4 В скорость коррозии уменьшается в 8—9 раз. Наличие ватерлинии и сварного шва, выполненного аргонодуговой сваркой, не влияет на ход поляризационных кривых и не вызывает преимущественной коррозии по ватерлинии и сварному шву образцов стали с анодной защитой. Сталь 10Х17Н13МЗТ может быть заменена менее дефицитной 08Х21Н6М2Т с применением анодной защиты. [c.57]

    Палладий по своему поведению при электрохимическом выделении водорода во многом похож на платину. Опытные данные по величинам токов обмена и наклону тафелевских прямых указывают на заторможенность рекомбинации как на вероятную причину водородного перенапряжения. Кобозев и Монбланова (1935) доказали возможность замедленного протекания стадии рекомбинации на электродах из палладия. Они применили тонкую палладиевую мембрану, одна сторона которой — поляризационная — всегда соприкасалась с раствором и могла поляризоваться внешним током, а другая —диффузионная —контактировала с газовой фазой или раствором (рис. 73). При наложении катодного тока на поляризационную сторону мембраны и смещении ее потенциала в отрицательном направлении выделение водорода вначале происходит только на поляризационной стороне, а затем и на диффузионной. Одновременно с этим потенциал диффузионной стороны также становился более отрицательным. Такой переход водорода и передача потенциала с поляризационной стороны на диффузионную возможны в том случае, если образующийся в процессе разряда атомарный водород не успевает покинуть поверхности электрода. Его концентрация увеличивается по сравнению с равновесной, и он начинает проникать в глубь палладия, достигая диффузионной стороны мембраны. Появление избыточного водорода на диффузионной стороне сдвигает ее потенциал в отрицательном направлении, что также указывает на медленное протекание рекомбинации. Однако, по Фрумкину, перенапряжение водорода на палладии нельзя приписать только замедленности рекомбинации. Если поляризовать мембрану малым током до постоянного значения потенциала, а затем выключить ток, то для каждой из ее сторон получаются различные кривые спада потенциала. На поляризационной стороне непосредственно после выключения тока наблюдается резкое падение перенапряжения, которое затем уменьшается значительно медленнее. На диффузионной стороне проявляется только второй участок, т. е. после выключения тока потенциал постепенно сдвигается к его равновесному значению в данном растворе. Быстрый спад перенапряжения объясняется замедленностью разряда, медленный спад —удалением избыточного водорода. [c.380]

    Заполнение поверхности электрода органическим веществом является сложной функцией потенциала. Поэтому поляризационные кривые при постоянной объемной концентрации муравьиной кислоты не отражают действительного влияния потенциала на скорость электроокисления. При переходе от одной точки поляризационной кривой к другой изменяется не только потенциал электрода, но и поверхностная концентрация реагирующего вещества. Для того чтобы получить истинное влияние потенциала на скорость электрохимического процесса, не искаженное влиянием потенциала на адсорбцию реагирующего вещества, были построены поляризационные кривые при 0R = onst (рис. 4). Из рисунка хорошо видно, что при 0R = onst даже в области потенциалов 0,35—О 55 в тафелевский наклон равен RTIF, т. е. [c.160]

    НИЙ теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при. количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением массы образца за единицу времени, отнесенным к единице его поверхности, или (в электрических единицах) плотностью тока /. Коррозионные же диаграммы, прив15денныс на рнс. 24.4 и 24.5, построены в координатах потенциал — сила тока, т. е. не позволяют судить о плотности тока, непосредственно характеризующей скорость коррозии. Для ее расчета нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо установить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных— катодные. Это позволит найти общую скорость катодной, и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зиая стационарные потенциалы, можно,, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, пс которой уже затем определить максимально возможную силу тока. Предполагая, что омические потери малы, и зная, как распределяется поверхность между анодными и катодными зонами, вычисляют скорость коррозии. Этот сложный способ, дающий к тому же не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.499]

    Задачу определения скорости коррозии решают проще с помощью кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии (вырал<аемая силой тока анодного растворения металла), отнесенная ко всей его поверхности (т. е. включая и катодные зоны), должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом,если потенциал стационарен, то плотности тока для анодного и катодного ироцессов при указанном способе снятия поляризационных кривых должны быть оди-ипкопымп. При этом предполагают, тo омическими потерями можно пренебречь. [c.499]

    Фактические катодная и анодная плотности тока могут быть различными, если поверхность корродирующего металла разделена на участки, на которых возможно протекание либо только катодной, либо только анодной реакции. Это, однако, не имеет значения при определении общей скорости коррозии, и, следовательно, можно рассматривать поверхность корродирующего металла как эквипотенциальную . Характер совмещенных поляризационных кривых, получаемых по этому методу, показан на рис. 24.6 (сплошные линии). Точка пересечения анодной и катодной поляризационных кривых дает на оси абсцисс скорость коррозии, а на оси ординат — стационарный потенциал. Так как вблизи стационарного потенциала поляризационные 1 данные перестают укладываться в полулогарифмическую зависимость, то скорость коррозии находят обычно по точке пересечения экстраполированных прямоли-не/шых участков поляризационных кривых (пунктирные линии на рис. 24.6). Сопоставление величин скорости коррозии, рассчитанных на основании поляризационных измерений, с полученными непосредсвеино из убыли массы (или в кислых средах по объему выделившегося водорода) для свинца, никеля и железа показало, что оба ряда данных совпадают в пределах ошибок опыта. Это позволило широко использовать метод поляризационных измерений при количественном изучении коррозионных процессов. [c.500]

    До сих пор, как при построении поляризационных кривых, так и при построении коррозионных диаграмм мы пользовались так называемыми идеальными поляризационными кривыми. За начальный потенциал анодной кривой принимался равновесный потенциал анодного металла, за начальный потенциал катода Б° — равновесный потенциал катодного процесса в данных условиях. В реальных случаях даже при отсутствии тока имеется достаточно причин для отклонения этих потенциалов от ав1Говеспых значений. Такими причинами могут быть, например, образование или удаление защитных пленок, накопление на поверхности электродов различных включений и т. д. [c.54]

    Эффективность электрохимической защиты двухэлектродной системы можно установить, пользуясь поляризационной диаграммой коррозии, приведенной на рис, 200. Пусть анодная кривая— кривая Е В, а катодная — Е°С. Точка пересечения этнх кривых О указывает нам силу коррозионного тока кор и стационарный потенциал Е , который устанавливается на обоих электродах рассматриваемой системы. Если вся система будет запо-ляризована до более отрицательного потенциала, например до Ей то сила тока на аноде уменьшится до значения /ь Анодный ток (ток коррозии) в нашем элементе полностью прекратится, если система будет заполяризована до потенциала Е . В процессе катодной поляризации поляризующий ток идет, с одной стороны, на подавление анодного тока (т. е. непосредственно иа защиту от коррозии), а с другой, — на поляризацию катода от потенциала Ех до потенциала Е . Поэтому сила поляризующего тока, как правило, должна быть больше достигаемого защитного эффекта. Сила защитного тока должна быть тем больше, чем больше катодная поверхность и чем меньше поляризуемость катода, Это значит, что при малой поляризуемости катода требуется очень большая сила тока. [c.300]

    Для достижения наилучшего ингибирующего эффекта концентрация пассиватора должна превышать определенное критическое значение. Ниже этого значения пассиваторы ведут себя как активные деполяризаторы и увеличивают скорость коррозии на локализованных участках поверхности (питтинг). Более низкая концентрация пассиватора соответствует бЬлее отрицательным значениям окислительно-восстановительного потенциала, и вследствие этого катодная поляризационная кривая пересекает анодную кривую в активной, а не в пассивной области (см. рис. 16.1). [c.262]

    Возникновение электрохим ической пассивности платины было обстоятельно изучено А. Н. Фрумкиным, А. Шалыгиным, а также Б. В. Эрщлером. Они изучали поляризационные кривые процесса заряжения платинового электрода, сопоставляя электродный потенциал я количество электричества, затрачиваемого на отдельные стадии процесса . Было показано, что для достижения пассивности металла совсем не обязательно, чтобы атомы кислорода целикам закрывали всю поверхность металла. Достаточно неко орой доли поверхности (около 0,1—0,2), чтобы вызвать пассивность. Это запирающее действие объясняется действием силовьсх полей адсорбированных атомов, перекрывающих пустую пове рхность 2. [c.116]

    Характерная поляризационная кривая анодного пассивирования электролитического никеля (твердый раствор водорода в N1), снятая в 1-н. растворе N 504 с учетам не только силы тока и потенциалов, но и количества электричества, показана яа рис. 72 . На участке аЬ происходит образование ионов никеля, при этом поляризация достигает +0,25 в. Далее следует падение силы тока и дальнейшие подъемы потенциала до 0,4 в (участок Ьс). На этом участке начинается адсорбция ионов гидроксила и повышение емкости анода. По количеству затраченного электричества и по приросту потенциала на участке Ьс, принимая приближенно, что истинная повержность свежераство-ренного металла равна десятикратной геометрической поверхности, получаем прирост емкости электрода, равный 900 мкф1см . [c.116]

    Катодную поляризационную кривую снимают в ячейке без разделения электродных пространств в гальванодинамическом режиме со скоростью, исключающей заметное изменение исходной площади поверхности вследствие образования губки, на катоде из меди в форме диска, впаянного в стекло или запрессованного в тефлон, в интервале плотностей тока от 5 до 500— 700 А/м . Подготовку поверхности катода перед каждым опытом проводят согласно приложению II, удаляя образовавшуюся губку. Электродом сравнения служит медный электрод в виде погруженной в электролитический ключ проволоки потенциал меди в данных растворах близок к обратимому значению. Поляризационные измерения оканчивают при потенциалах выделения водорода. Изучают влияние скорости развертки в интервале от 2 до 0,3 мА/с на форму кривой и значение пред. Для выбора плотности тока при электролизе используют минимальное значение ред, соответствующее условиям стационарной диффузии. [c.136]

    На электродах 1 и 2 возникают поляризационные сопротивления и 2, отличающиеся от омического сопротивления, поскольку зависят от потенциала и включают в себя сопротивления, соответствующие всем видам перенапряжений. Кроме того, электроды можно представить (исходя из теории электрохимического двойного слоя) как конденсаторы с емкостью Сг и Сг. Поверхности Р этих конденсаторов равны поверхностям электродов, расстояние между пластинами конденсаторов й составляет 10 см (порядка диаметров молекул). Параллельно конденсаторам С и Сг включены сопротивления и Яя. Рис. Д.90. Эквивалентная схема из- Эти системы разделены рас-иерительной ячейки для электрохи- твором электролита с ОМИче-мических методов анализа. [c.278]

    При электрохимическом механизме нет необходимости в прямом соударении частиц окислителя и восстановителя между собой окислительные и восстановительные процессы протекают раздельно с участием металлической поверхности, которая принимает электроны от восстановителя (в данном примере от атомов цинка) и передает их окислителю (ионам водорода). Поляризационные кривые, отвечающие парциальным реакциям (I) и (И) на цинковом электроде, приведены на рис. 181. Равновесный потенциал цинкового электрода в растворе соли цинка 2п р более отрицателен, чем равновесный водородный потенциал н. р- Предположим, что цинковый электрод опущен в раствор соли 2пС1г и, следовательно, имеет потенциал При добавлении соляной кислоты к раствору гпСЦ на поверхности цинка начнется выделение водорода, что сместит потенциал электрода в анодную сторону. При этом скорость выделения водорода падает и одновременно возрастает скорость растворения цинка. Наконец, устанавливается стационарное состояние, когда токи катодного выделения водорода и анодного растворения цинка равны 1=— 2. В стационарных условиях при разомкнутой цепи цинковый электрод приобретает потенциал лежащий между равновесными потенциалами и н, р. Потенциал Е называется стационарным или смешанным (компромиссным) потенциалом. При стационарном потенциале [c.348]


Смотреть страницы где упоминается термин Потенциал поверхности поляризационный: [c.161]    [c.448]    [c.78]    [c.237]    [c.417]    [c.643]    [c.69]    [c.346]    [c.363]    [c.363]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал поляризационный



© 2024 chem21.info Реклама на сайте