Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернистый ангидрид реакция с ароматическими углеводородами

    Краузе [24] установил, что сернистый ангидрид не реагирует с предельными, ароматическими и нафтеновыми углеводородами независимо от применяемой реакционной среды. Бутилены при комнатной температуре также не реагируют со спиртовым раствором сернистого ангидрида, но при повышенных температурах и при применении жидкого сернистого ангидрида реакция идет, хотя довольно медленно. Эти обстоятельства определяют применимость сернистого ангидрида для разделения фракции С4. Значение сернистого ангидрида еще более усиливается, благодаря его способности давать с бутанами нераздельно-кипящие смеси с минимумом температуры кипения. [c.210]


    Очевидно, что подавлению хлорирования способствует избыток сернистого ангидрида по отношению к хлору. В случае углеводородов с прямой цепью уже при мольном отношении ЗОг С1г= 1,1 1 доля реакции хлорирования составляет 3—5%, что вполне приемлемо для промышленной практики. Олефины и ароматические уг- [c.337]

    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]

    Образование новых молекул в результате сочетания двух или большего числа молекул углеводородов и образование ароматических структур в результате дегидрирования способствуют появлению в битуме более жестких структур — асфальтенов. Эти новые полициклические ароматические компоненты изменяют первоначальную коллоидную структуру битума. Смолы и в меньшей степени масла превращаются при окислении сернистым ангидридом в асфальтены. Величина отношения асфальтены/смолы возрастает, и асфальтены коагулируют — битум переходит из золя в гель. Сера за счет еще невыясненного механизма во время реакции внедряется в углеводородные структуры, что важно для повышения твердости. После завершения реакции кислород сернистого ангидрида в окисленном продукте не обнаруживается он удаляется в виде реакционной воды. Это, пожалуй, самое убедительное свидетельство того, что термин окисление здесь неуместен, а скорее — дегидроконденсация насыщенной и полу-насыщенной (нафтено-ароматической) частей сырья. [c.137]

    Ход и развитие побочных реакций зависят от условий процесса, в особенности от температуры и от соотношения сернистый ангидрид ароматические углеводороды. Установлено протекание следу-юш,их побочных реакций  [c.227]

    Сульфирование серным ангидридом в растворе сернистого ангидрида. Этим методом удается лучше всего регулировать температуру реакции и качество продукта. Сульфирование ведут в жидком сернистом ангидриде при температуре его кипения (—10°С). Отвод тепла достигается за счет испарения растворителя, что исключает возможность перегревов. Сернистый ангидрид хорошо растворяет как серный ангидрид, так и ароматические соединения, и реакция протекает в гомогенной среде с высокой интенсивностью. Для более полного превращения углеводорода берут примерно 5%-ный избыток серного ангидрида. Схема сульфирования бензола серным ангидридом в растворе сернистого ангидрида изображена на рис. 88. [c.455]


    К 1940 Г, были открыты две важные реакции насыщенных углеводородов— сульфохлорирование и сульфоокисление, занявшие для углеводородов этого класса такое же место, как действие серной кислоты и ее производных на ароматические соединения. Сульфохлорирование состоит во взаимодействии сернистого ангидрида и хлора с парафиновым углеводородом при освещении  [c.458]

    Очевидно, что подавлению хлорирования способствует избыток сернистого ангидрида по отношению к хлору. В случае углеводородов с прямой цепью уже при мольном отношении SO2 l2= 1,1 1 доля реакции хлорирования составляет 3—5%, что вполне приемлемо для промышленной практики. Олефины и ароматические углеводороды при сульфохлорировании преимущественно хлорируются. Поэтому их примеси к исходному сырью недопустимы, и сырье нужно подвергать соответствующей очистке. [c.460]

    Реакция сернистого ангидрида с ароматическими углеводородами и хлористым алюминием с образованием сульфиновых кислот, повидимому, включает промежуточное образование соединения А1С12802С1, по этому поводу имеются указания в литературе [270]. Кнёвенагель и Кеннер [271] нашли, что ароматические сульфиновые кислоты с выходом около 80 /о могут быть легко получены при действии сернистого ангидрида и хлористого алюминия на ароматические углеводороды или их галоидопроизводные при низкой температуре. Авторы вызывали реакцию, пропуская в смесь сухой хлористый водород, и образовавшийся комплекс из хлористого алюминия и ароматической сульфиновой кислоты разлагали щелочью. Таким образом получены сульфиновые кислоты следующих углеводородов бензола, толуола, о-, м- и л-ксилолов, мезитилена, псевдо-] умола, л-цимола. Так же были получены сульфиновые кислоты л-хлор-и л-бромбензола. [c.259]

    Так, полного и четкого выделения сернистых соединений из нефтяных фракций экстракционными или хроматографическими методами практически невозможно достигнуть из-за малой полярности этих компонентов, близкой к полярности ароматических углеводородов. Г. Д. Гальнерн с сотр. предложил окислять нефтяные сульфиды, трудно отделяемые от других компонентов, в суль-фоксиды перекисью водорода [169, 170]. При обработке светлых нефтяных дистиллятов эта реакция протекает в мягких условиях, и высокоселективно [171], и гетерогенным эмульсионным окислением удается получить сульфоксиды, полностью свободные от примесей тиофеновых производных [172]. Селективность окисления фракций, кипящих выше 350—360°С, значительно хуже даже при более жестких условиях (при гомогенном окислении 37%-ной Н2О2 в уксусном ангидриде). Например, среди продуктов окисления фракции С21—С24 ромашкинской нефти обнаружено около 30% производных тиофена и бензотиофена [173]. [c.22]

    Вопрос экономии сульфирующего агента наиболее радикально решается при использовании 50з. Существуют два варианта сульфирования ароматических соединеннй с 50з, Первый применим для малолетучих веществ и заключается в сульфировании парами 50з, разбавленными воздухом. По условиям реакции и типу реакторов (см. рис. 93, б, в и г) процесс аналогичен сульфированию спнрто15 и олефинов этим же агентом. Другой вариант состоит в проведении реакции в жидком сернистом ангидриде, в котором раствоимы как 50з, так и ароматический углеводород. При т. кип. жидкого сернистого ангидрида, равной —10 °С, процесс протекает в мягких гомогенных условиях, причем тепло реакции снимают за счет испарения ЗОг этим обеспечивается отсутствие перегревов и снижается роль побочных реакций. При таком способе сульфирования применяют реактор, ранее встречавшийся для сульфатирования спиртов хлорсульфоновой кислотой (см. рис. 93, а). [c.333]

    Утилизация кислых гудронов. Процесс сернокислотной очистки парафина является высокоэффективным только при условии регенерации кислого гудрона. Одним из серьезных препятствий для широкого внедрения атого процесса была невозможность утилизации отходов очистки - кислого гудрона и продуктов нейтрализации. Кислый гудрон, получаемый при деароматизации кидкйх парафинов, представляет собой жидкую массу рт темно-коричневого до черного цвета с запахом сернистого ангидрида. Он состоит из непрореагировавшей серной кислоты, нерастворимых в парафине продуктов реакции серной кислоты с углеводородами (главным образом с ароматическими углеводородами и кислородными, азотистыми и сернистыми соединениями), а также из увлеченного парафина. Состав кислого гудрона, образовавшегося после очистки олеумом жидких парафинов(которые были получены на установке карбамидной депарафинизации) и денормализации на цеолитах, приведен ниже  [c.221]

    Выделение бензола и его гомологов. Сырой бензол, получаемый при коксовании, содержит мало насыщенных углеводородов. Поэтому после очистки от непредельных углеводородов обычной ректификацией можно получить достаточно концентрированные фракции бензола, толуола и ксилолов ( 99,9% основного вещества). Такие же фракции, выделенные из легкого масла пиролиза, очищенного от непредельных, содержат до 4—5% несульфирующихся соединений (парафинов и нафтенов). В процессах дальнейшей переработки, связанных с рециркуляцией непрореагировавших ароматических углеводородов, эти примеси могут накапливаться в системе и ухудшать условия протекания целевых реакций. Катали-заты риформинга на 40—70% состоят из парафинов и нафтенов, имеющих очень бли3iкиe температуры кипения с соответствующими ароматическими углеводородами. В этом случае для выделения ароматических концентратов требуются специальные методы, которые в равной степени применимы для различных фракций смолы пиролиза. При выделении ароматических углеводородов из ката-лизатов платформинга наибольшее применение нашел метод селективной экстракции, основанный на хорошей растворимости ароматических углеводородов в некоторых полярных жидкостях. Раньше использовали жидкий сернистый ангидрид, а в настоящее время — диэтиленгликоль с добавкой 8—10% воды. Метод применим для широких фракций и извлечения из них любых ароматических углеводородов. Экстракцию осуществляют в противоточных колоннах, роторно-дисковых и других экстракторах. Из полученного раствора ароматические углеводороды отгоняют в ректификационной колонне, после чего растворитель охлаждают и возвращают на экстракцию. Смесь ароматических углеводородов далее подвергают перегонке с целью выделения индивидуальных веществ. [c.95]


    Количество циркулирующего на такой установке сернистого ангидрида определяет ориентировочные размеры основного аппарата — сульфуратора. В сульфуратор, с одной стороны, впрыскивается смесь 60 кг ч SO в жидком SO2 с температурой 20° С, с другой стороны— масло в количестве 600 кг ч с температурой 20° С. Теплота реакции снимается испаряющимся SOj. Тепловой эффект реакции сульфирования масла АС-6 определялся экспериментально и составлял 58 ккалЫг масла, что соответствует теоретическим и практическим данным А. И. Гершеновича тепло реакции сульфирования алкилароматических соединений составляет 42,5 ккал/моль масло АС-6 имеет молекулярный вес 360 и содержит 45% ароматических углеводородов. Отсюда тепло реакции [c.42]

    При реакции фурана или его гомолога сильвапа с винилметилкетоном или винилфенилкетоном происходит алкилирование такого же типа, как и в случае ароматических углеводородов (ср. субституционное присоединение, стр. 158). Алкилирование протекает главным образом в присутствии кислых катализаторов, самым активным из которых является сернистый ангидрид [1748—1749а]. Винилкетон стабилизируют присадкой гидрохинона. Фуран, благодаря тому что он является менее активным, вследствие чего реакция требует нагревания под давлением до температуры 140°, алкили-руется даже в оба сс-положения сильван алкилируют при комнатной температуре. [c.371]


Смотреть страницы где упоминается термин Сернистый ангидрид реакция с ароматическими углеводородами: [c.110]    [c.527]    [c.9]    [c.221]    [c.292]    [c.133]    [c.227]    [c.621]    [c.9]    [c.133]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.16 , c.505 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды, реакции

Сернистый ангидрид

Сернистый газ сернистый ангидрид



© 2024 chem21.info Реклама на сайте