Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромистые межкристаллитная

    Межкристаллитная коррозия (см. рис. 3. 2ж) является одним из наиболее опасных видов местной коррозии, приводящей к избирательному разрушению границ зерен, что сопровождается потерей прочности и пластичности сплава (часто без изменения внешнего его вида) и преждевременным разрушением конструкций. Коррозия этого вида наблюдается у многих сплавов хромистых и хромоникелевых сталей, никелевых сплавов, алюминиевых сплавов и др. [c.420]


    Существенным недостатком хромоникелевых так же, как и хромистых, сталей является их подверженность в определенных условиях некоторым видам местной коррозии, связанным с местным нарушением пассивного состояния, в том числе и межкристаллитной коррозии. [c.421]

    Хромистые стали, так же как и хромоникелевые стали, подвержены межкристаллитной коррозии в случае выпадения по границам зерен богатых хромом карбидов и обеднения хромом [c.215]

    Межкристаллитная коррозия (МКК) представляет собой разрушение сплава, локализованное на границах зерен. Следствием этого вида коррозии является потеря сплавом прочности и пластичности и быстрое разрушение изготовленной из него конструкции. Межкристаллитной коррозии подвержены широко применяемые сплавы, в частности высоколегированные коррозионностойкие стали (хромистые и хромоникелевые), сплавы алюминия (дюралюминий), сплавы никеля. [c.445]

    Межкристаллитная коррозия является одним из наиболее опасных видов местной коррозии (рис. 1.4.1, к), приводящей к избирательному разрушению границ зерен, что сопровождается потерей прочности и пластичности металлов и сплавов. Опасность заключается в том, что зачастую изменений во внешнем виде изделий, поврежденных межкристаллитной коррозией, не происходит. Коррозия этого вида наблюдается у многих материалов — хромистых и хромоникелевых нержавеющих сталей, никелевых и алюминиевых сплавов и т. п. [c.80]

    Межкристаллитная коррозия хромистых нержавеющих сталей [c.94]

    Межкристаллитная коррозия (рис. 1.1, з) характеризуется разрушением металла по границам зерен. Она особенно опасна тем, что внешний вид металла не меняется, но он быстро теряет прочность и пластичность и легко разрушается. Связано это с образованием между зернами рыхлых малопрочных продуктов коррозии. Этому виду разрушений особенно подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы. [c.16]

    Характерным и опасным (из-за трудности своевременного обнаружения) видом коррозии хромоникелевых и хромистых сталей является межкристаллитная коррозия. Как следует из названия, коррозия этого вида распространяется по границам кристаллитов, что, в конечном счете, приводит к резкому снижению прочности материала. [c.152]

    Сказанное справедливо для случаев сварки электродами любых металлов. При сварке хромистых и хромоникелевых сталей, кроме того, приходится считаться еще с одним характерным явлением — межкристаллитной коррозией, о которой говорилось выше. [c.169]

    Коррозионное растрескивание нержавеющих сталей наблюдается главным образом в сталях мартенситного класса (12% хрома). Аустенитные стали типа 18-8 более склонны к коррозии под напряжением, чем полуферритные хромистые стали. Значительное влияние на склонность к коррозии под напряжением оказывает стабильность аустенита. Характер коррозионного растрескивания в большинстве сред транскристаллитный, если сталь не склонна к межкристаллитной коррозии. Если сталь склонна к межкристаллитной коррозии, то растрескивание происходит по границам зерен. [c.276]


    При межкристаллитной коррозии процесс разрушения развивается по границам зерен кристаллов металла или сплава, постепенно разобщая существующую между ними внутреннюю металлическую связь, и понижает механические свойства металла. Наиболее подвержены межкристаллитной коррозии нержавеющие и кислотостойкие — хромистые и хромоникелевые — стали после сварки. [c.12]

    У хромистых и хромоникелевых сталей при испытаниях на изгиб наблюдалась аналогичная связь между стойкостью и твердостью или пределом текучести [98, стр. 233]. Межкристаллитные трещины [105] в данном случае исходят от оснований частых сквозных повреждений [98]. [c.37]

    Межкристаллитная коррозия — разрушение металла по границам кристаллитов (зерен) с потерей его механической прочности внешний вид металла при этом не меняется, но он легко разрушается на отдельные кристаллики под механическим воздействием (рис. 1,з). Объясняется это образованием между зернами металла или сплава рыхлых малопрочных продуктов коррозии. Этому виду коррозии подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы. [c.11]

    Борьбу со склонностью стали Х18Н9 к межкристаллитной коррозии ведут путем предотвращения выпадения хромистых карбидов  [c.423]

    Одним из наиболее распространенн1Мх растворов для испытания на склонность нержавеющих сталей к межкристаллитной коррозии является раствор серпой кислоты н медного купороса, в котором образцы кипятят. Склонность к межкристаллитной коррозии обнаруживается по растрескиванию образцов (после кипячения) при их загибе на угол, равный 90°. Опыт показывает, что этот метод пригоден для выявления склонности к мел<крн-сталлитной коррозии хромистых, ферритны.х, ] артенситных и хромоникелевых сталей аустенитного, аустенито-ферритного и аустенито-мартенситного классов, так как этот раствор выявляет межкристаллитную коррозию при выпадении карбидной фазы. Этот раствор не выявляет межкристаллитную коррозию в том случае, когда межкристаллитная коррозия является следствием выделения ст-фазы. В последнем случае значительно лучше выявляет межкристаллитную коррозию, связанную с выпадением ст-фазы, кипящий 65%-ный раствор азотной кислоты. Оценка склонности металла к межкристаллитной коррозии в этом растворе производится массовым методом, чем он прщщи- [c.344]

    Необходимость длительной и безотказной работы различных деталей и изделий в контакте с агрессивной средой предъявляет высокие требования к коррозионной стойкости и долговечности материалов, из которых они изготовлены. В качестве коррозионностойких сталей во многих отраслях промышленности находят применение хромистые и хромоникелевые стали, содержащие не менее 12...13 % хрома. Однако эти стали во многих случаях могут быть подвержены одному из наиболее опасных видов коррозионного поражения - меж -фисталлитной коррозии (МКК), нередко являющейся причиной отказов оборудования и возникновения аварийных ситуаций. Межкристаллитная коррозия локализуется по границам зерен без видимых вооруженным глазом изменений внешнего вида, формы и размеров изделий. Сцепление между зер. ослабевает как в поверхностном слое, так и по всему сечению изделия, что может привести к практически полной потере функциональной способности изделия и механической прочности. [c.83]

    Недостатком хромомарганцевых сталей типа Сг 18Мп 15N, как и хромистых, является их склонность к межкристаллитной коррозии, которая зависит не только от химического и структурного состава сталей, но и от природы коррозионной среды. [c.33]

    Следует отметить, что хромистые стали склонны к межкрис-таллитной коррозии, протекающей по границам зерен в результате обеднения их хромом. Ввецение в эти стали титана и ниобия повышает стойкость их к межкристаллитной коррозии. Хромистые стали, наряду с высокой коррозионной стойкостью, весьма технологичны (хорошо отливаются, штампуются, протягиваются и прокатываются, поддаются механической обработке, в результате закалки и отпуска приобретают высокую твердость и прочность). [c.39]

    Широкое применение получили стали системы Ре — Сг — N1 без присадок и с присадками меди, молибдена, титана и ниобия. Эти стали характеризуются хорошими механическими и технологическими свойствами и обладают хорошей коррозионной стойкостью. Никель повышает пластичность стали, способствует формированию мелкозернистой структуры. Холодная деформация ведет к повышению прочности данных сталей. Однако эти стали склонны к межкристаллитной и точе шой коррозии. Следует отметить, что хромоникелевые стали обладают более высокой коррозионной стойкостью, чем хромистые стали, поскольку йведение никеля способствует обр- заванию мелкозернистой однофазной структуры сплава, для которой характерна повышенная коррозионная стойкость. [c.39]

    В морской воде и агрессивных шахтных водах высоколегированные стали подвержены питтинговой коррозии. Однако если стали имеют склонность к межкристаллитной коррозии, питтинговая коррозия постепенно переходит в межкристаллитную, которая распространяется сравнительно быстро. Межкристаллитная коррозия, связанная с питтинговыми поражениями по границам зерен, может наблюдаться не только у хромистых сталей, но и у высокопрочных аустенитных хромомарганцевоникелевых сталей, легированных азотом при нагревании в области критических температур. Если сталь склонна к межкристаллитной коррозии в стандартном растворе, то можно ожидать, что она будет склонной к этому виду коррозии и в морской воде. [c.99]


    Хромистые стали подвержены межкристаллитной коррозии не только в воде, содержащей хлорид натрия, но и в содержащем сероводород конденсате. Хотя высоколегированные стали разрушаются в присутствии сероводорода лишь под действием больших напряжений, в сталях 1X13 межкристаллитная коррозия протекает за 24 ч даже без внешней нагрузки. Очевидно, этот случай связан с коррозионным растрескиванием. [c.99]

    Коррозионностойкие стали подразделяются на хромистые, хромоникелевые, хромомарганцевые и хромомарганцевоникелевые стали. По структуре коррозионностойкие стали могут быть аустенитно-го, ферритного, аустенито-ферритного, мартенситного и мартенсито-ферритного классов. Наиболее опасными видами коррозии коррозионностойких сталей являются питтинговая, язвенная и щелевая коррозии в кислых и в нейтральных растворах хлоридов, межкристаллитная коррозия, коррозионное растрескивание в горячих растворах хлоридов. [c.69]

    Часто утверждается (см. также рис. 8), что стойкость к растрескиванию во внешней среде возрастает с повышением температуры отпуска [9, 15, 23, 27]. При этом, конечно, предполагается, что дoллiны быть исключены области температур, вызывающих охрупчивание в результате отпуска [7, 17, 52]. Предполагалось, что этот эффект может быть связан с изменением коэффициента диффузии водорода [15], с облегчением межкристаллитного растрескивания [9] или с растрескиванием смешанного типа [54]. Однако прямых подтверждений какого-либо из этих предположений по существу нет. Более того, следует поставить вопрос о том, насколько общей является взаимосвязь температуры отпуска и стойкости к растрескиванию, поскольку в случае хромистых мартенситных нержавеющих сталей подобной корреляции не обнаружено [54, 56]. [c.63]

    Таким образом, легированные хромом перлитные и хромистые фер-ритно-мартенситовые стали в условиях сжигания прибалтийских сланцев имеют низкую коррозионную стойкость из-за большой чувствительности хрома К щелочным хлоридам. Несколько более окалиностойкими являются аустенитные хромоникелевые стали. Однако при высоких содержаниях никеля возникает повышенная опасность межкристаллитной коррозии. [c.266]

    Сплавы на основе железа. Само железо стойко к коррозии лишь в р-рах щелочей. Повышения стойкости добиваются с помощью легирования разл. элементами (см. Же.1еза сп.ювы). К коррозионностойким сталям относят хромистые, хромоникелевые, хромомарганцевоникелевые и хромомарганцевые. Их стойкость в разл. средах определяется структурой, а также св-вами образующихся пассивирующих поверхностных слоев (см. Пассивность металлов). При Hap>TiieHHH пассивирующей пленки в нейтральных н кислых р-рах хлоридов возникает питтинговая, щелевая и язвенная коррозия, а при т-рах больше 80 °С - коррозионное растрескивание. Для предупреждения структурно-избира-тельных видов коррозии (межкристаллитная, ножевая) стали дополнительно легируют Ti или Nb, а также снижают содержание в них С до 0.02%. [c.478]

    Склонность к межкристаллитной коррозии у высокохромистых нержавеющих сталей (Сг > 17 %, С > 0,025 %) проявляется после ускоренного охлаждения с высоких температур (1000-1100 °С) и обусловлена выделением в границах зерен сталей карбидов хрома, приводящим к обеднению по этому элементу зернограничного твердого раствора. Протекающая в ряде сред, например, в растворах (Н2804 + СиЗО ) или (НзРО.) + Си804), межкристаллитная коррозия этих сталей является следствием резкого снижения анодной поляризации границ зерен и сопровождается переходом в раствор только железа. Склонность к межкристаллитной коррозии у хромистых сталей можно ликвидировать повторным нагревом до 600-800 °С. Такой нагрев приводит к завершению выпадения карбидов и коагуляции выпавших ранее карбидш>1х частиц, к обогащению границ зерен хромом в результате его диффузии и снятию внутренних напряжений, возникших в процессе выделения карбидных включений из твердого раствора стали при ускоренном охлаждении от 1 ООО °С и более. [c.94]

    Дополнительным средством повышения стойкости высокохромистых сталей к межкристаллитной коррозии может служить их легирование титаном, связывающим углерод в груднорастворимые специальные карбиды и препятствующим образованию хромистых карбидных включений в границах зерен. [c.94]

    Ударная вязкость исследуемой хромистой стали электронно-лучевой плавки была очень высокой до —38 °С. При более низких температурах ударная вязкость резко падает. Сталь хорошо сваривается в атмосфере инертного газа. По данным [125] сварной шов вязкий, имеет прекрасные механические и коррозионные свойства. Эта сталь показывает высокую коррозионную стойкость по отношению к межкристаллитной, питтинговой коррозии и коррозионному растрескиванию. Испытания в муравьиной (рис. 57) и в уксусной кислотах (95 %-ной при 125°С, длительность испытаний 7 дней) показали, что она имеет значительно более высокую коррозионную стойкость, чем стали 18Сг8М1 и 18Сг12Ы 2,5Мо в этих условиях. [c.162]

    Наибольшее практическое значение в настоящее время имеет межкристаллитная коррозия металлов в электролитах, рассмотрению методов изучения которой и будет посвящена настоящая глава. Относительно низкая коррозионная стойкость металлов по границам зерен связывается с повышенной электрохимической неоднородностью в этих районах. Обычно последнее является следствием выделения по границам зерен вторичных фаз, которые могут быть либо эффективными анодами, либо катодами по отношению к близлежащим участкам твердого раствора. Такими фазами, например, при нагреве многих хромистых и хромоникелевых сталей до температуры 450—850° С могут быть хромовожелезные карбиды Сг4(Ре)С, сигма-фаза, обедненный хромом аустенит [109], а при нагреве после закалки до 150° С многих алюминиевых сплавов — металлическое соединение СиАЬ [110]. Разрушение этих материалов имеет наибольшее практическое значение. Однако даже для них еще не разработаны методы определения склонности к межкристаллитной коррозии, полностью удовлетворяющие исследователей и практиков. [c.96]

    Этот вид коррозии в той или иной степени присущ всем легированным сталям. Уменьшить склонность хромистой стали к межкристаллитной коррозии можно снижением содержания углерода, введением карбидообра-зующих элементов (титана или ниобия), повторной термической обработкой готовых изделий (после сварки). [c.97]

    Ослабить подверженность хромоникелевой стали межкристаллитной коррозии, как и в случае хромистых сталей, можно введением в их состав карбидообразующих элементов титана или ниобия, термической обработкой полуфабрикатов или готовых изделий с последующей (при возможности) закалкой на аустенит при 1000— 1100°С, а также-снижением содержания углерода до 0,020% (см. рис. 1.3). С этой целью разработаны и внедряются 8, с. 129 9 10] низкоуглеродистые аустенитные стали типа 000Х18Н11 (ЭП550), содержащие <0,03% (0,026%) углерода. Эти стали обладают повышенным сопротивлением не только к межкристаллитной и ножевой коррозии, но и к общей коррозии, особенно в окислительных средах, что в равной мере относится как к основному металлу, так и к сварным соединениям [8]. Коррозионная стойкость низкоуглеродистых аустенитных сталей, примерно, в 15 раз выше, чем стали 0Х18Н10Т [9]. В них отсутствуют карбидные включения и поэтому они обладают высокими пластичными свойствами. [c.101]

    Малоуглеродистые безникелевые и малоникелевые стали, к которым относятся низкоуглеродистые хромистые ферритные стали с суммарным содержанием углерода и азота до 0,015 %, характеризуются коррозионной стойкостью, устойчивостью к коррозионному растрескиванию и межкристаллитной коррозии. [c.52]

    Руководствуясь этим принципом, авторы [8] установили, что растворы, применяемые для выявления межкристаллитной коррозии на сталях 18-8, могут быть рекомендованы и для ферритных хромистых сталей Х17Т и Х25Т. [c.252]

    Хромистые стали. Эти стали с содержанием хрома 3% и более также могут подвергаться межкристаллитной коррозии, если их нагреть до 925° С и аатем быстро охладить, как бывает, например, при сварке (сенсибилизация). При этом коррозии подвергнутся зоны непосредственно у сварного шва. Более высокие содержания хрома (до 28—33%), а также незначительное содержание углерода (вплоть до 0,005%) устраняют эту опастность. Благодаря высокому содержанию хрома нижняя граница чувствительности сдвигается в сторону более высоких температур (рис. [c.29]

    Высоколегированные стали. Коррозии под напряжением подвержены аустенитные стали, например хромоникелевые стали 18-8 с добавкой Мо и без нее, стабилизированные и нестабилизированные низко-углеродистые сорта, аустенитные хромомарганцовоникелевые стали и стали с более высоким содержанием никеля (AISI309 и 310). Нержавеющая сталь с дисперсионным твердением более подвержена коррозии, чем аустенитная сталь. Ферритные хромистые стали с 12 17 и 25% хрома менее склонны к коррозии. Аустенитные стали особенно нестойки, если в них почти отсутствуют ферритные составляющие [121]. Коррозия здесь преимущественно вну-трикристаллитная. Она бывает и межкристаллитной — у сталей в сенсибилизированном состоянии или при недостаточной стабилизации. [c.44]

    Газы, содержащие сероводород, при высоких температурах вызывают коррозию стали и железа (обезуглероживают карбидные соединения или образуют метан и пористый сульфид). Коррозия, начинающаяся с поверхности как межкристаллитная, распространяется далее вглубь из-за веществ, образующихся по границам зерен при этом откалываются значительные по объему куски продуктов коррозии. Этот вид коррозии встречается на применяемых в нефтеочистке хромомолибденовых сталях (1% Сг, 0,5% Мо и 5% Сг, 0,5% Мо), реже на хромистых (более 12% Сг) и не встречается на хромоникелевых сталях 18-8 [172, 173]. [c.58]


Смотреть страницы где упоминается термин Хромистые межкристаллитная: [c.422]    [c.216]    [c.217]    [c.224]    [c.46]    [c.111]    [c.14]    [c.19]    [c.624]    [c.55]    [c.71]    [c.114]    [c.199]    [c.105]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.31 , c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Межкристаллитная коррозия хромистых нержавеющих сталей

Межкристаллитная коррозия хромистых сталей



© 2024 chem21.info Реклама на сайте