Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки биосинтез природа ферментов

    ИММУНОХИМИЯ — наука, изучающая химич. процессы, с к-рыми связана невосприимчивость организма к инфекционному заражению (и м м у н и -т 0 т), а также повышенная чувствительность к повторному введению в организм нек-рых веществ. Невосприимчивость может быть обусловлена врожденными особенностями организма (естественный иммунитет), а также создана искусственно (приобретенный иммунитет). Химич. основы естественного иммунитета могут существенно различаться в случае разных инфекций (напр., наличие у нек-рых организмов специальных ферментов, разрушающих биосубстраты бактерий наследственно закрепленная аномалия гемоглобина, пагубно влияющая на возбудителя малярии, и т. п.). Главным предметом изучения И. является приобретенный иммунитет, в основе к-рого лежит способность организма, в ответ на попадание в него ряда веществ антигенов) синтезировать специфич. белки — антитела, к-рые взаимодействуют именно с этими веществами или веществами, близкими к пим ио структуре. Основные проблемы И. изучение химич. природы антигенов, механизма биосинтеза антител, изучение взаимодействия между антигенами и антителами, создание химич. методов определения содержания антител и выделения их из сыворотки в чистом виде, изучение структуры антител. [c.111]


    В природе органические полимеры получаются в результате биосинтеза под действием катализаторов - ферментов к таким полимерам, имеющим достаточно высокую молекулярную массу, относятся белки, нуклеиновые кислоты, целлюлоза, крахмал, лигнин, гемицеллюлозы и др. Природные полимеры выполняют различные функции в природе и технике. Одни из них, например белки и углеводы, выполняют функции пита- [c.18]

    Огромное значение для молекулярной биологии последнего десятилетия имеет развитие генетической инженерии (возникшей в 1972—1973 гг. П. Берг, П. Лобан, С. Коэн и Г. Бойер) и методов работы с рекомбинантными ДНК в сочетании с методами химического синтеза крупных фрагментов ДНК. В результате сделались доступными для исследования индивидуальные гены и регуляторные генетические элементы, было стимулировано изучение ферментов биосинтеза и обмена нуклеиновых кислот. Благодаря этому после 1977 г. были обнаружены мозаичное (экзон-интронное) строение генов, явление сплайсинга и ферментативной активности у РНК, усилители ( энхансеры ) экспрессии генов, многие регуляторные белки, онкогены и онкобелки, мобильные генетические элементы. Возникла белковая инженерия, которая позволяет получать новые, не существующие в природе белки. Молекулярная биология начала оказывать существенное влияние на развитие биотехнологии, медицины и сельского хозяйства. [c.9]

    Несмотря на сложность и многоступенчатость процесса, биосинтез в клетке идет быстро. Так, например, синтез белковой молекулы гемоглобина, состоящей из 150 аминокислотных остатков, осуществляется за полторы минуты. В клетках синтезируются сот и различных белков. Для многочисленных реакций обмена веществ клетке нужны ферменты, которые имеют также белковую природу. [c.285]

    Для успешной борьбы за существование в природе необходимо, чтобы процесс роста был быстрым и эффективным. Несомненно, что прекращение образования каких-либо конечных продуктов метаболизма, когда потребность в них временно отпала или когда они накопились в достаточных количествах, выгодна для организма. Экспериментально установлено, что при максимальной скорости синтеза того или иного фермента долй этого фермента в общем белке клетки может достичь 5—8%. Совершенно очевидно, что если из тысяч ферментов, которые клетка потенциально способна синтезировать, хотя бы несколько будут образовываться с такой максимальной скоростью, то рост клетки замедлится и нормальное функционирование и даже само выживание ее станет невозможным. Поэтому микроорганизмы должны обладать способностью управлять процессами биосинтеза, а так- [c.9]


    РНК-полимераза Е. oli изучена наиболее подробно. Это олигомерный фермент, состоящий из двух одинаковых а-субъединиц (мол. масса 36000), двух разных ( j и Р,)-субъединиц (мол. масса соответственно 151000 и 155000), (D-субъединицы (мол. масса 11000) и а-субъединицы общая мол. масса фермента около 390000. Считают, что функция а-субъединицы (а-фактор)—узнавание определенного участка на матрице ДНК, названного промотором, к которому присоединяется РНК-полимераза. В результате образуется так называемый открытый комплекс фермента с ДНК двухцепочечная структура ДНК раскрывается ( плавится ). Далее на одной из нитей ДНК, как на матрице, синтезируется мРНК синтез заканчивается в определенной точке в конце гена или прерывается под действием особых белков. Другим субъединицам фермента приписывают функцию инициации биосинтеза РНК (а-субъединицам) и основную каталитическую функцию (связывание субстратов и элонгация синтеза) — -субъединицам. Кроме того, открыт ряд белков, принимающих участие в механизме синтеза РНК в клетке. В частности, исследуется природа репрессорных белков и белка-терминатора (р-фактора). Последний обладает способностью обратимо связываться с терминирующими участками ДНК (так называемые стоп-сигналы транскрипции), выключая действие РНК-иолимеразы. При отсутствии этого белка образуются исключительно длинные цепи РНК. [c.489]

    Несмотря на большое число исследований, чисто химический аспект действия инсулина остается неясным - . Обычно считается, что гормон действует на плазматические мембраны всех тканей, вызывая заметные изменения проницаемости, что поиводит к возрастанию поглощения глюкозы, различных ионов и других веществ. Такого рода изменения проницаемости могут обусловить сильное влияние инсулина на важнейшие процессы биосинтеза имеет место, в частности, повышение синтеза гликогена, липидов и белков. В то же время процессы катаболизма подавляются и активность катаболических ферментов, например глюкозо-6-фосфатазы, снижается. Ключом к пониманию действия инсулина может явиться выяснение вопроса о природе его вторичного посредника , аналогичного по своему действию сАМР. Высказывались предположения, что вторичным посредником для инсулина является сАМР, однако более вероятно, что эту роль выполняет какой-то ион, возможно К+ . [c.505]

    Использованию ферментов в качестве катализаторов для реакции соединения пептидов и в настоящее время уделяется большое внимание. Катализ образовании пептидов при биосинтезе белка осуществляет фермент перти-дилтрансфераза. Так как этот фермент взаимодействует с протеиногенными аминокислотами независимо от природы боковой цепи, теоретически он представляет собой идеальный катализатор для реакций целенаправленного синтеза пептидов. Пептидилтрансфераза в сложной рибосомной системе структурно тесно связана со всеми другими составляющими, кроме того, на стадии элонгации во время биосинтеза белка одновременно действуют также другие факторы. Поэтому вероятность того, что выделенный из естественной среды фермент вообще будет способен к катализу реакции синтеза пептидов, очень мала. Никакого выхода в практику пептидного синтеза не получил также изученный Липманном механизм биосинтеза пептидных антибиотиков, который проходит с участием определенных ферментов. [c.166]

    Однако в характере метаболизма, химическом составе и строении различных тканей и различных организмов имеются и бесспорные различия. Что касается метаболизма, то особенности его в соответствующих органах или тканях, несомненно, определяются набором ферментов. Различия в химическом составе органов и тканей тоже зависят от их ферментного состава, в первую очередь от тех ферментов, которые участвуют в процессах биосинтеза. Не исключено, что и более очевидные различия, касающиеся строения и формы тех или иных органов и тканей, также имеют энзимологическую природу. Известно, что строение и форма находятся под контролем генов контроль осуществляется путем образования специфических белков, из которых главными для организации тканей являются ферменты и транспортные системы. Продуктами генов могут быть также белки, не обладающие каталитическими свойствами, но играющие важную роль в встраивании ферментных белков в соответствующие структурные ансамбли, например мембраны однако такие молекулы можно рассматривать как компоненты катализаторов, поскольку они находятся в теснейшей взаимосвязи с ними. [c.96]

    Р. широко распространен в микроорганизмах, в растительных и животных клетках, однако животные организмы не способны к самостоятельному биосинтезу Р. и получают его с нищей. Р. встречается в природе в свободном виде, но гл. обр. в виде фосфорили-ровашюго производного по первичной гидроксильной группе (рибофлавин-5 -фосфат, флавинмононуклеотид) или в его соединении с аденозин-5 -фосфатом (фла-винадениндинуклеотид, ФАД, см. Флавиновые коферменты), связанным со снецифич. белками и часто с металлами в многочисленных флавопротеид-ных ферментах класса оксидоредуктаз. [c.338]


    В литературе отмечается недостаточное использование в биотехнологии принципов организации природных биологических систем, в частности, основанных на взаимоотношениях организмов разных видов. В микробиологии уже накоплен положительный опыт смешанного культивирования. В результате изучения смешанных культур микроорганизмов (выделенных из природы или созданных искусственно) выяснилось, что можно проводить более эффективно (по сравнению с монокультурами) накопление биомассы, кооперативный биосинтез конечных продуктов или трансформацию в нужном направлении исходного субстрата. Такие системы находят все большее применение в микробиологической промышленности и могут быть использованы для очистки сточных вод, биосинтеза белка (ферментов) и биологически активных веществ, таких, как ауксины, витамины, антибиотики (Н. С. Егоров и др., 1982). Считается, что в биотехнологии найдут применение смешанные популяции, разнообразные по своему составу, начиная от комбинаций нескольких штаммов одного вида микроорганизма и кончая сочетаниями представителей разных царств — животного и растительного (А. А. Воробьев, В. И. Коровкин, 1983). [c.54]

    Витамин С в природе находится как в свободном, так и связанном состоянии, называемом аскорбигеном (см. Аскорбиген). Благодаря наличию в его струк ре двух енольных групп он может быть донором и акцептором водорода, т. е. принимать участие в биологическом окислении в клетках и тканях. Он необходим для биосинтеза кортикостероидов в надпочечниках, предохраняет от окисления адреналин, суль-фидрилыше группы белков и ферментов, способствует повышению свертываемости крови и регенерации тканей, образованию соединительной ткани. [c.145]

    В последние годы при изучении влияния, оказываемого на процессы сексуализации растений ауксинами и гиббереллинами, устанавливается тесная связь этих изменений с нуклеиновым обменом. Нет оснований сомневаться в том, что и в данном случае речь идет об уже описанных нами выше механизмах, связанных с регуляцией биосинтеза специфических белков — ферментов. Дальнейшие исследования позволят пролить свет на природу ответственных за эти процессы катализаторов, что откроет новые возможности управления этой важной стадией жизнедеятельности растительного организма. [c.617]

    Изучена динамика активности глюкозо-6-фосфатдегидроге-назы (Г6ФДГ), алкогольдегидрогеназы (АДГ) и пероксидазы (ПР) зерновок пшеницы сорта Приленская 19 в течение 24 часов набухания (рис. 68). Показано, что в увеличении активности ферментов отмечается индивидуальная периодичность, зависящая от их природы и места локализации. Аналогичная периодичность в увеличении скорости биосинтеза макромолекул была отмечена на 6—9-м и 14—20-м часах прорастания семян гороха [Калинин, 1986]. Между этими двумя периодами исследователи отмечали снижение интенсивности биосинтеза белка и РНК. Причем изменение скорости процессов синтеза [c.164]

    В связи с тем что для биосинтеза организм использует не готовые пищевые белки, а продукты их гидролитического расщепления — аминокислоты, процесс переваривания белков в организме настроен таким образом, чтобы лишить белки пищи их видовой и тканевой специфичности. До 97 % белков пищи под действием протеолитических пищеварительных ферментов желудочно-кишечного тракта (табл. 12.5) подвергаются мно гостадийному, селективному гидролизу, в результате которого образуются свободные аминокислоты, используемые в дальнейшем клетками организма для синтеза собственных, специфических белков. Белки опорных тканей — коллаген и эластин не подвергаются гидролизу. В процессах гидролиза сложных белков наряду с протеолитическими ферментами принимают участие ферменты, гидролизующие простетические группы углеводной, липидной и нуклеотидной природы. [c.373]

    Таким образом, какой-либо трансгенный сорт растения отличается от исходного только тем, что в его генетическом материале к 25 — 30 тысячам существующих генов добавлен относительно небольшой фрагмент ДНК, в котором записана информация об одном-двух новых генах и их регуляторных элементах. Активность тих добавленных генов в организме выражается в биосинтезе одного-двух новых для организма протеинов (ферментов или структурных белков). Поскольку генетическая инженерия может оперировать любыми генами, существующими в природе, а не только генами от организмов, состоящих в эволюционном родстве с отдельными видами культурных растений, как это делается в традиционной селекции, то продукты привнесенных генов (ферменты, протеины) могут выглядеть в генетически модифицированном организме как необычные, несвойственные, чужеродные для данного вида, которые в природе у него не встречаются. Соответственно именно продукты трансгенов являются наиболее существенными, осязаемыми факторами рисков, связанных с генно-инженерными организмами. [c.63]


Смотреть страницы где упоминается термин Белки биосинтез природа ферментов: [c.111]    [c.492]    [c.58]    [c.27]    [c.209]    [c.63]    [c.93]    [c.337]    [c.427]    [c.221]    [c.111]    [c.194]    [c.399]   
Ферменты Т.3 (1982) -- [ c.18 , c.19 ]




ПОИСК







© 2024 chem21.info Реклама на сайте