Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты катаболические

Рис. 13-15. Регуляция катаболического пути по типу обратной связи, т. е. за счет ингибирования аллостерического фермента конечным продуктом данного процесса. Буквами I, К, Ь и т. д. обозначены промежуточные продукты данного метаболического пути, а буквами Е,, Ег, Ез и т. д.-ферменты, катализирующие отдельные стадии. Первая стадия катализируется аллостерическим ферментом (Е,), который ингибируется конечным продуктом данной последовательности реакций. Аллостерическое ингибирование показано прерывистой красной стрелкой, которая соединяет ингибирующий метаболит с реакцией, катализируемой аллостерическим ферментом. Регулируемая стадия (катализируемая ферментом Е,) в условиях клетки обычно представляет собой практически необратимую реакцию. Рис. 13-15. Регуляция <a href="/info/100162">катаболического пути</a> по <a href="/info/765312">типу обратной связи</a>, т. е. за счет <a href="/info/97084">ингибирования аллостерического</a> фермента <a href="/info/17660">конечным продуктом</a> <a href="/info/855557">данного процесса</a>. Буквами I, К, Ь и т. д. обозначены <a href="/info/6222">промежуточные продукты</a> данного <a href="/info/188015">метаболического пути</a>, а буквами Е,, Ег, Ез и т. д.-ферменты, <a href="/info/1652935">катализирующие отдельные</a> стадии. <a href="/info/73640">Первая стадия</a> катализируется <a href="/info/70324">аллостерическим ферментом</a> (Е,), который ингибируется <a href="/info/17660">конечным продуктом</a> данной <a href="/info/2829">последовательности реакций</a>. <a href="/info/97084">Аллостерическое ингибирование</a> показано прерывистой красной стрелкой, которая соединяет ингибирующий метаболит с реакцией, катализируемой <a href="/info/70324">аллостерическим ферментом</a>. Регулируемая стадия (катализируемая ферментом Е,) в <a href="/info/1384734">условиях клетки</a> обычно представляет <a href="/info/1795776">собой</a> <a href="/info/1749129">практически необратимую</a> реакцию.

    Регуляторным ферментом гликогенолиза является гликогенфосфорилаза — первый фермент в катаболической цепи мобилизации гликогена. Этот фермент переводит углеводы из запасной формы в форму метаболически активную (фосфорилированную). Фермент фосфорилаза существует в двух формах, одна из которых (фосфорилаза а) активна, в то время как другая (фосфорилаза Ь) неактивна. Обе формы могут диссоциировать на одинаковые субъединицы. Фосфорилаза Ь состоит из двух субъединиц, а фосфорилаза а — из четырех. Превращение фосфорилазы Ь в фосфорилазу а осуществляется фосфорилированием белка по уравнению [c.251]

    Таким образом, взаимопревращение метаболитов, образующихся при катаболизме веществ разных классов, тесно связано с энергетическим обменом. Известно, что одним из энергоемких процессов в организме является биосинтез белка, и становится понятна в этом отношении интеграция этого процесса с катаболическими реакциями превращения глюкозы и триацилглицерола — основными источниками синтеза АТФ в процессе окислительного фосфорилирования. В свою очередь, все реакции углеводного и липидного обмена катализируются ферментами, являющимися белками. Следует отметить, что единство метаболических процессов находится под воздействием условий внешней среды и способность живых организмов сохранять постоянство внутренней среды — биохимический гомеостаз — при помощи механизмов саморегуляции является одним из важнейших свойств всех живых систем. [c.449]

    Катаболитная репрессия. В то время как репрессия конечным продуктом действует на путях биосинтеза, при помощи катаболитной репрессии регулируются катаболические реакции. Если в питательной среде содержатся два разных субстрата, то, как правило, бактерии предпочитают тот, который обеспечивает более быстрый рост. Этот субстрат вызывает репрессию синтеза тех ферментов, которые нужны для ис- [c.478]

    Помимо адениловых нуклеотидов в регулировании энергетических процессов активную роль играют система НАД(Ф)" / /НАД(Ф) Н2-коферментов и величина трансмембранного электрохимического градиента ионов водорода в виде обоих его составляющих и АрН). Преобладание аллостерического взаимодействия восстановленной или окисленной форм НАД(Ф) с ферментами катаболического пути приводит соответственно к понижению или повышению их активности. Достижение определенного порогового значения Арн+ на энергопреобразующей мембране служит определенным сигналом, тормозящим поступление ионов водорода против градиента. [c.124]


    Некоторые микроорганизмы обладают природной способностью к деградации различных ксенобиотиков, однако следует иметь в виду, что 1) ни один из них не может разрушать все органические соединения 2) некоторые органические соединения в высокой концентрации подавляют функционирование или рост деградирующих их микроорганизмов 3) большинство очагов загрязнения содержит смесь химикатов, и микроорганизм, способный разрушать один или несколько ее компонентов, может инактивироваться другими компонентами 4) многие неполярные соединения адсорбируются частицами почвы и становятся менее доступными 5) биодеградация органических соединений часто происходит довольно медленно. Часть этих проблем можно решить, осуществив конъюгационный перенос плазмид, которые кодируют ферменты разных катаболических путей, в один реципиентный штамм (рис. 13.5). Если две плазмиды содержат гомологичные участки, то между ними может произойти рекомбинация с образованием гибридной плазмиды, которая имеет больший размер и обладает свойствами исходных плазмид. Если же две плазмиды не содержат гомологичных участков и относятся к разным группам несовместимости, то они могут сосуществовать в одной бактерии. [c.276]

    В общем можно считать, что в прорастающем семени имеется две зоны активности зона запасных веществ и зона роста (зародыш). Главные события, происходящие в зоне запасных веществ, носят, за исключением синтеза ферментов, катаболический характер, т. е. связаны с процессами распада. [c.127]

    На протяжении всей истории биохимии часто высказывалось предположение о том, что определенный биосинтетический путь представляет собой точное обращение соответствующего катаболического пути. Например, ферменты, осуществляющие гидролиз белков, в определенных условиях (концентрация аминокислот и pH) катализируют образо- [c.458]

    В клетке нет ничего статичного. Структуры постоянно создаются и снова разрушаются. Всё с большей или меньшей скоростью подвергается взаимопревращению. Гидролитические ферменты атакуют все полимеры, из которых состоят клетки, а активные катаболические реакции разрушают образующиеся в результате таких атак мономеры. Мембранные структуры также подвергаются изменениям в результате гидроксилирования и гликозилирования. Эти реакции являются источником движущей силы, обеспечивающей перемещение материала, образующегося в результате распада мембран, на наружную поверхность клетки. В это же время другие процессы, включая процессы распада под действием лизосомных ферментов, дают возможность материалу, из которого строятся мембраны, вновь проникать в клетку. Окислительные процессы приводят к разрушению веществ гидрофобной природы, таких, как стерины и жирные кислоты мембранных липидов, и к их превращению в более легко растворимые вещества, которые затем распадаются н подвергаются полному окислению. [c.502]

    Первоначально представляли, что синтез белка могут катализировать те же протеолитические ферменты, которые вызывают и его гидролиз, но путем обратимости химической реакции. Однако оказалось, что синтетические и катаболические реакции протекают не только различными путями, но даже в разных субклеточных фракциях. Не подтвердилась также гипотеза о предварительном синтезе коротких пептидов с последующим их объединением в одну полипептидную цепь. Более правильным оказалось предположение, что для синтеза белка требуются источники энергии, наличие активированных свободных аминокислот и нескольких типов клеточных нуклеиновых кислот. [c.509]

Рис. 13-9. Параллельные катаболические и анаболические пути должны быть различными хотя бы на одной из ферментативных стадий, для того чтобы они могли регулироваться независимо. Показаны два варианта независимой регуляции катаболического и анаболического путей между А и Р. В первом варианте эти пути совершенно различны, т. е. катализируются разными наборами ферментов. Во втором-анаболический и катаболический пути различаются лишь по одному ферменту. Регулируемые стадии в обоих вариантах обозначены красными стрелками. Рис. 13-9. Параллельные катаболические и <a href="/info/566249">анаболические пути</a> <a href="/info/1633404">должны быть</a> различными хотя бы на одной из <a href="/info/1862097">ферментативных стадий</a>, для того чтобы они могли регулироваться независимо. Показаны два варианта независимой регуляции катаболического и <a href="/info/566249">анаболического путей</a> между А и Р. В <a href="/info/1532657">первом варианте</a> эти пути совершенно различны, т. е. катализируются разными <a href="/info/1321873">наборами ферментов</a>. Во втором-анаболический и <a href="/info/100162">катаболический пути</a> различаются лишь по одному ферменту. Регулируемые стадии в обоих вариантах обозначены красными стрелками.
    Процесс распада жирных кислот локализован в клетке и включает несколько этапов. На первом из них жирная кислота с помощью соответствующего фермента превращается в КоА-про-изводное, которое окисляется в Р-положении с последующим отщеплением ацетил-КоА. Другим продуктом реакции является КоА-производное жирной кислоты, укороченное на два углеродных атома. Ацетил-КоА по катаболическим каналам используется для получения клеткой энергии. [c.92]


    ЦТК в системе катаболических путей не занимает ведущего места. У ряда облигатных метилотрофов он не замкнут (см. рис. 85). Если даже содержит все ферменты, активность некоторых из них невысока. [c.399]

    Скорости главных катаболических реакций, обеспечивающих расщепление глюкозы и извлечение химической энергии в форме АТР, в каждый данный момент регулируются в соответствии с потребностями клетки в АТР независимо от того, как будет затем этот АТР использоваться-в биосинтетических реакциях, для активного переноса веществ или для механической работы в сократительных структурах. Поскольку продукты расщепления глюкозы играют важную роль и в качестве предшественников, и как промежуточные продукты других метаболических процессов, регуляторные ферменты катаболизма углеводов распознают также соответствующие сигналы других метаболических путей и отвечают на эти сигналы. Теперь мы [c.461]

    Образование катаболических ферментов регулируется путем индукции. С точки зрения экономности клеточного метаболизма выгодно, чтобы ферменты, участвующие в использовании субстрата и включении продуктов его распада в промежуточный обмен, синтезировались лишь в тех случаях, когда данный субстрат имеется в питательной среде. Все другие катаболические ферменты, которые клетка способна синтезировать, не должны образовываться, пока в них нет надобности. [c.473]

    С нарушением клеточной мембраны связаны радиационные изменения поведенческих функций ЦНС. Радиационное повреждение эндоплазматического ретикулума приводит к уменьшению синтеза белков. Поврежденные лизосомы высвобождают катаболические ферменты, способные вызвать изменения нуклеиновых кислот, белков и мукополисахаридов. Нарушение структуры и функции митохондрий снижает уровень окислительного фосфорили-рования. [c.17]

    В 1970-х гг. Чакрабарти и его коллегами был создан первый бактериальный штамм, обладающий более широкими катаболическими возможностями. Он расщеплял больщинство углеводородов нефти и был назван супербациллой . Для его получения использовали плазмиды, каждая из которых кодировала фермент, расщепляющий определенный класс углеводородов плазмида САМ детерминировала деградацию камфары, ОСТ - октана, NAH - нафталина, XYL - ксилола (рис. 13.5). Сначала путем конъюгации пере- [c.276]

    При гидроксилировании дофамина аскорбиновой кислотой в присутствии медьсодержащего фермента [уравнение (10-57)] образуется нор-адреналин (норэпинефрин). Последующее метилирование приводит к образованию важного гормона адреналина (эпинефрина). Имеются два основных пути катаболического разрушения катехоламинов. Они показаны на рис. 14-20 на примере адреналина. Моноаминооксидаза (МАО) вызывает окислительное расщепление, сопровождающееся дезаминирб-ванием. Последующее окислительное отщепление боковой цепи в сочетании с метилированием дает такие конечные продукты, как ванилиновая кислота, выделяемая с мочой. Второй катаболический путь состоит в непосредственном О-метилировании под действием катехоламин — 0-метилтрансферазы (КОМТ), очень активного фермента, присутствующего в нервных тканях. Метаболиты почти не обладают какой-либо заметной физиологической активностью и могут экскретироваться как таковые или подвергаться дальнейшему окислительному распаду,  [c.148]

    Последовательности р-ций в организме, в к-рых осуществляется превращ. субстратов в конечные продукты О.в., наз. путями О. в., или метаболич. путями, а в-ва, участвующие в этих р-циях,-метаболитами. В зависимости от характера превращ. субстратов метаболич. пути подразделяют на анаболические и катаболические. Обратимые участки метаболич. путей, состоящие из равновесных р-ций и используемые организмами как для синтеза, так и для расщепления сложных соед., наз. амфиболическими. Подавляющую часть р-ций, составляющих метаболич. пути, катализируют ферменты. Для своего функционирования мн. ферменты нуждаются в низкомол. соед., наз. коферментами. У высших животных ббльшая часть коферментов (или их непосредственных предшественников) поступает в организм с пищей в виде незаменимых факторов питания-витаминов. [c.310]

    Биодеградация - это процесс разрушения микроорганизмами веществ, загрязняющих окружающую среду. Многие бактерии рода Pseudomonas несут плазмиды, кодирующие ферменты, которые катализируют расщепление ароматических и галогенсодержащих огранических соединений. В большинстве случаев одна плазмида содержит гены ферментов одного специфичного катаболического пути. Объединяя плазмиды разных штаммов Pseudomonas в одном хозяине, можно создать организм, способный к деградации нескольких соединений. Кроме того, с помощью генетических манипуляций можно расширить спектр субстратов, разрушаемых с помощью определенного ферментативного пути. [c.302]

    Опять-таки имеется семейство ферментов, специфичных к цепям разной длины. Одним из продуктов [уравнение (9-2)] служит ацетил-СоА, который поступает в цикл трикарбоновых кислот и подвергается катаболическому распаду с образованием СО2. Вторым продуктом тиолитического распада является ацил-СоА-производное, которое на два атома углерода короче исходной молекулы. Оно снова вступает в цикл р-окисления, причем в результате каждого оборота цикла освобождается двухуглеродный фрагмент, уходящий в виде ацетил-СоА [уравнение (9-2)]. Процесс продолжается до полного расщепления жирнокислотной цепи. Если исходная жирная кислота содержала в не-разветвленной цепи четное число атомов углерода, то ацетил-СоА бу- [c.309]

    Как правило, в катаболических реакциях участвует НАО+, и поэтому не совсем обычно, когда в таких реакциях в качестве окислителя выступает ЫАОР+. Тем не менее у млекопитающих ферменты пентозо-фосфатного цикла специфичны к НАОР+. Существует предположение, что это связано с потребностью в МАОРН для процессов биосинтеза (гл. 11, разд. В). Тогда становится понятным функционирование пенто-зофосфатного пути в тканях с наиболее активным биосинтезом (печень, молочная железа). Возможно, что в этих тканях Сз-продукты цикла вовлекаются в процессы биосинтеза, как показано на рис. 9-8, Л. Далее читателю должно быть уже понятно, что любой продукт от С4 до С может быть выведен из цикла в любых желаемых количествах без каких-либо нарушений в работе этого цикла. Например, мы знаем, что образующийся на промежуточной стадии С4-продукт эритрозо-4-фосфат используется бактериями и растениями (но не животными) для синтеза ароматических аминокислот. Подобным же образом рибозо-5-фос-фат необходим для образования нуклеиновых кислот и некоторых аминокислот. [c.343]

    Основные механизмы, регулирующие катаболические пути, — индукция синтеза ферментов и катаболитная репрессия. Катаболические пути, в которых функционируют конститутивные ферменты, регулируются большей частью посредством аллостерических воздействий на активность ферментов. Одна из задач катаболических путей — обеспечение клетки энергией. У большинства прокариот возможности генерации энергии намного превышают потребности в ней клетки. Количество АТФ, которое можно синтезировать с помощью имеющихся в клетках аэробных прокариот ферментов гликолитического и дыхательного путей, значительно больше количества АТФ, необходимого для процессов биосинтеза и поддержания жизнедеятельности. Поэтому клетки должны обладать способностью контролировать потребление энергодающих субстратов и, следовательно, выработку клеточной энергии. Основной принцип контроля прост АТФ синтезируется только тогда, когда он необходим. Иными словами, интенсивность энергетических процессов у прокариот регулируется внутриклеточным содержанием АТФ. [c.123]

    Несмотря на большое число исследований, чисто химический аспект действия инсулина остается неясным - . Обычно считается, что гормон действует на плазматические мембраны всех тканей, вызывая заметные изменения проницаемости, что поиводит к возрастанию поглощения глюкозы, различных ионов и других веществ. Такого рода изменения проницаемости могут обусловить сильное влияние инсулина на важнейшие процессы биосинтеза имеет место, в частности, повышение синтеза гликогена, липидов и белков. В то же время процессы катаболизма подавляются и активность катаболических ферментов, например глюкозо-6-фосфатазы, снижается. Ключом к пониманию действия инсулина может явиться выяснение вопроса о природе его вторичного посредника , аналогичного по своему действию сАМР. Высказывались предположения, что вторичным посредником для инсулина является сАМР, однако более вероятно, что эту роль выполняет какой-то ион, возможно К+ . [c.505]

    Наблюдаются и такие цепи катаболических реакций, когда субстрат действует как индуктор фермента только для первой реакции, затем первый промежуточный продукт А индуцирует биосинтез следующего фермента и т. д. Использование регуляторного механизма индукции ферментов дает возможность значительно увеличить синтез этих ферментов. При длительном выращивании культуры Е. oii на среде с лактозой содержание Р-галактозидазы увеличивается в 1000 раз. После индукции количество этого фермента в клетке достигает 3% общего содержания белков. Аналогичная картина наблюдается при работе с продуцентом амилазы — плесневыми грибами рода Aspergillus. [c.47]

    Одним из уникальных свойств живых организмов является удивительная их способность к сохранению сбалансированности катаболических (биодегра-дативных) и анаболических (биосинтетических) процессов. При этом в клетках одновременно совершаются процессы синтеза, распада и взаимопревращения сотен и тысяч разнообразных веществ, которые в свою очередь регулируются множеством механизмов, обеспечивающих постоянство внутренней среды организма. Некоторые из этих регуляторных механизмов, среди которых важная роль принадлежит механизмам регуляции синтеза и каталитической активности ферментов, будут рассмотрены далее. [c.152]

    Скорость реакции (как и активность ферментов) в чисто биодеградативных (катаболических) процессах регулируется промежуточными продуктами, являющимися индикаторами энергетического состояния клетюг (пуриновые нуклеотвды, пирофосфат, неорганический фосфат и др.). [c.155]

    Индукция синтеза ферментов. В большинстве случаев регуляция путем индукции характерна для катаболических путей, где в качестве индукторов выступают обычно субстраты этих путей. Классический пример индуцибельного фермента — 3-галактозидаза Е. oli. Оказалось, что если клетки Е. соИ выращивать в среде, содержащей глюкозу, то они не могут использовать лактозу. Если такие клетки поместить в среду, где лактоза— единственный источник углерода, после некоторого периода в них происходит ин- [c.120]

    Плазмиды с одинаковым названием кодируют ферменты одного и того же катаболического пути, чотя могут быть получены в разных лабораториях и иметь разные размеры. [c.276]

    До появления технологии рекомбинантных ДНК одним из способов переноса генетического материала из одного микроорганизма в другой была конъюгация. Такой механизм обеспечивал перенос из клетки в клетку целых плазмид. А. М. Чакрабарти, проводивший эксперименты по переносу плазмид- разрушительниц , т. е. плазмид, кодирующих все ферменты пути биодеградации определенного соединения, сконструировал штамм, содержащий несколько таких плазмид. Кодируемые плазмидными генами ферменты каждого катаболического [c.289]

    Иной представляется картина для обмена жирных кислот. Здесь катаболизм завершается образованием ацетил-КоА, а биосинтез начинается с того же самого промежуточного продукта и идет по пути, который на первый взгляд представляется простым повторением катаболической последовательности реакций в обратном порядке. В главе 23 бьшо обращено внимание на то, что это далеко не так. Во-первых, ацетил-КоА должен сначала превратиться в более реакционноспособный малонил-КоА, который не является промежуточным продуктом при катаболизме во-вторых, весь набор ферментов, ответственных за преврашение малонил-КоА в ацилпроизводные с более длинной цепью, отличается от набора ферментов, участвующих в катаболизме, и, наконец, в-третьих, эти ферменты локализованы совсем в другом компартменте ютетки. [c.446]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Во многих видах растений соединения с бербиновым скелетом биохимически весьма активны и служат субстратами окислительных и гидролитических ферментов. При этом с участием воды или кислорода происходит расщепление связей С—С или С—N и дальнейшие химические трансформации углеродно-азотного остова. В результате образуется несколько типов азотистых веществ, часть из которых уже не содержит исходного гетероцикла, но обычно рассматривается совместно с изохинолиновыми алкалоидами. Катаболические реакции изохинолиновых оснований и солей могут идти по четырем ос- 6.316 новным направлениям, которые определяются природой расщепляющейся межатомной связи. Для удобства изложения дальнейшего материала целесообразно обозначить рвущиеся связи буквами латинского алфавита, как это сделано в формуле 6.316. [c.501]

    Катаболический путь и соответствующий ему, но противоположный по направлению анаболический путь между данным предшественником и данным продуктом обычно не совпадают. Могут различаться и промежуточные продукты, и отдельные стадии этих путей. Например, протекающее в печени расщепление глюкозы до пирувата представляет собой процесс, состояпщй из 11 последовательных стадий, катализируемых специфичными ферментами. Казалось бы, синтез глюкозы из пирувата должен быть простым обращением всех этих [c.383]

    Выше мы видели, что АТР и ADP являются модуляторами важных регуляторных ферментов, участвующих в гликолизе, цикле лимонной кислоты и окислительном фосфорилировании АТР действует как отрицательный модулятор, а ADP обычно стимулирует катаболизм углеводов. Вследствие этого любое изменение отношения действующих масс [ATP]/[ADP] [PJ, в норме весьма высокого, может соответствующим образом изменять также и активность некоторых регуляторных ферментов центральных катаболических путей. Имеются, однако, среди этих ферментов и такие, для которых положительным модулятором служит АМР. Чтобы оценить участие в метаболической регуляции наряду с АТР и ADP также и АМР, Даниэль Аткинсон ввел понятие энергетического заряда и использовал его в качестве одной из характеристик энергетического состояния клеток. Энергетический заряд есть мера заполнения всей аденинну-клеотидной системы (т.е. суммы АТР, ADP и АМР) высокоэнергетическими фосфатными группами  [c.541]

    Биосинтетические пути и соответствующие им катаболические пути контролируются разными регуляторными ферментами. Обычно регуляция соответствующих биосинтетических и катаболических путей осуществляется координированным образом, реципрокно, так что стимулирование биосинтетического пути сопровождается подавлением катаболического пути, и наоборот. Более того, биосинтетические пути регулируются обычно на одном из первых этапов. Это избавляет клетку от непроизводительных трат она не расходует предшественники на синтез тех промежуточных продуктов, которые ей не понадобятся. Мы вновь убеждаемся на этом примере, что принцип экономии лежит в основе молекулярной логики живых клеток. [c.601]

    При этом типе индукции основной (минимальный) уровень ферментов, участвующих в превращении триптофана в кинуренин, должен быть достаточно высок для того, чтобы при наличии высокой концентрации субстрата-триптофана-могли образоваться хотя бы следовые количества кинуренина. Индукцию продуктом при расщеплении Ь-трип-тофана через Ь-кинуренин можно рассматривать как защитный механизм, предотвращающий индукцию катаболических ферментов эндогенно синтезируемым триптофаном, необходимым для синтеза белка. Триптофан разлагается лишь тогда, когда он добавлен к питательной среде и поэтому клетки содержат его в высокой концентрации. [c.476]


Смотреть страницы где упоминается термин Ферменты катаболические: [c.10]    [c.459]    [c.187]    [c.384]    [c.384]    [c.389]    [c.389]    [c.398]    [c.229]    [c.287]    [c.417]    [c.476]    [c.480]    [c.491]   
Общая микробиология (1987) -- [ c.452 , c.473 , c.474 , c.476 , c.479 , c.498 ]




ПОИСК







© 2025 chem21.info Реклама на сайте