Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии эволюция

    В последние годы стало очевидным, что изменчивость как эу-, так и прокариотических организмов связана не только с точечными мутациями, хромосомными перестройками или описанными рекомбинационными событиями, но и с подвижными, или мобильными, генетическими элементами — сравнительно автономными сегментами ДНК, способными встраиваться в геном клетки-хозяина и вырезаться из него. К мобильным элементам можно отнести и некоторые вирусы — в этом случае возможно перемещение не только в пределах генетического материала одной клетки, но и между клетками (см. гл. ХП1). У бактерий перенос генетической инфор.мации между клетками могут осуществлять не только вирусы, но и плазмиды многие из которых могут встраиваться в различные участки генома клетки-хозяина и поэтому тоже могут быть отнесены к мобильным эле.ментам. Плазмиды и мобильные генетические элементы играют существенную роль в эволюции бактерий. [c.110]


    Фотосинтез — вероятно, наиболее важный из большого числа интересных фотохимических процессов, известных в биологии. От него зависела эволюция атмосферы Земли животные, поедая растения, также черпают энергию Солнца, запасенную фотосинтезом. Согласно оценке, общая масса органического вещества, созданного зелеными растениями в течение биологической истории Земли, составляет 1 % массы планеты. Каждый год в процессе фотосинтеза запасается энергия, эквивалентная десятикратному годовому ее потреблению человечеством. В этом разделе мы обсудим фотосинтез зеленых растений, хотя существуют также другие фотосинтезирующие организмы (например, некоторые бактерии), у которых процессы фотосинтеза могут несколько отличаться. [c.228]

    Чрезвычайно важным является то обстоятельство, что интегрированная в хромосому конъюгативная плазмида (например, F-фак-тор Е.соН) не теряет способности инициировать конъюгацию клеток и перенос ДНК из донора в реципиент. При этом ДНК плазмиды, составляющая одно целое с хромосомной ДНК, затаскивает в реципиент хромосому бактерии-донора. Между ДНК донора и реципиента может происходить общая рекомбинация, что приводит к обмену гомологичными генами между клетками бактериальной популяции. Этот процесс — бактериальный аналог полового размножения. Наличие механизма обмена генами очень важно для эволюции бактерий, поскольку, как и в случае патового размножения эукариот, нарушает абсолютную сцепленность генов одной хромосомы и позволяет естественному отбору находить благоприятные комбинации уже присутствующих в популяции бактерий аллельных вариантов генов. [c.128]

    Хотя, как мы убедились, многие свойства мобильных эле.ментов и плазмид разумно рассматривать с точки зрения концепции эгоистичной ДНК, они играют существенную позитивную роль в жизни бактерий-хозяев, даже если не приносят непосредственной пользы. Дело в том, что IS-элементы, транспозоны и плазмиды служат важнейшими факторами генетической изменчивости и эволюции бактерий. [c.126]

    Транспозоны вместе с плазмидами и фагами (в к-рые они легко интегрируются) способны осуществлять обмен разл, заключенных в них генов между весьма отдаленными видами бактерий, поэтому они играют чрезвычайно важную роль в эволюции бактерий, включая адаптацию их к лек. в-вам и продуцирования ими новых токсинов. [c.79]

    Считается, что на ранней стадии существования Земли в атмосфере не было свободного кислорода. Атмосфера была восстановительной и состояла из На, СН , NHз, N2 и Н2О либо только из аммиака и метана. Химическая эволюция органического вещества началась примерно 4 млрд. лет тому назад. Возникшие гетеротрофные организмы научились использовать солнечный свет, стали независимыми и при дальнейшей эволюции не испытывали недостатка в пище. Эти свойства имеют и некоторые пурпурные бактерии, существующие в настоящее время. Они ведут себя подобно гетеротрофам и используют органические соединения, но содержат также хлорофилл, с помощью которого совершается фотосинтез  [c.61]


    Оказывается, новосинтезированные цепи ДНК всегда содержат на 5 -конце несколько рибонуклеотидов. Иными словами, сннтеэ ДНК начинается с синтеза РНК- РНК-затравку для синтеза ДНК образует специальный фермент, называемый ДНК-праймазой (от англ. праймер — затравка). Праймаза может быть отдельны. 1 ферментом, как у бактерий, илн входить в качестве субъединицы в ДНК-полимеразу (как у ДНК-полимеразы а животных). В любом случае праймаза — это фермент, отличный от РНК-полимераз, синтезирующих разнообразные клеточные РНК и тоже способных инициировать синтез новых полинуклеотидных цепей (см. гл. VII). Почему же в таком случае для инициации цепей ДНК используются рибонуклеотиды Возможное объяснение состоит в том, что в ходе эволюции прай.чазы произошли из РНК-полимераз. Но есть и другое, функциональное, объяснение. Поскольку требования инициа- [c.51]

    Таким образом находясь в атмосфере, содержащей аммиак и азот, бактерии, а позже и растения, содержащие хлорофилл, должны были создать в ходе эволюции разнообразные АС, например белки, алкалоиды п др., входящие в состав растений и животных. Поскольку происхождение нефти связано в превращениями захороненного органического материала, разнообразные трансформированные АС в тех или иных количествах должны присутствовать в нефти. Их количество, состав и структура зависят от условий нефтеобразования — времени, температуры, исходного вещества, геологического окружения, деятельности бактерий, состава вод и др. Составы исходного (древнего) и современного органического материала примерно одинаковы и очень разнообразны. Поэтому кажется удивительным и до конца непонятным относительно однообразное и в целом сходное распределение АС в нефтях различного возраста и происхождения. В сущности АС могут либо быть трансформированными химическими ископаемыми, либо являться продуктом вторичных превращений азотсодержащих компонентов осажденного органического материала. Поэтому важно рассмотреть в общих чертах состав исходного органического материала и возможные пути его превращения в АС нефти. [c.61]

    Бактерии, грибы, актиномицеты инициируют и стимулируют процессы коррозии и старения продуктами своей жизнедеятельности, а при прямом или комбинированном воздействии (совместно с другими факторами среды) вызывают особый вид разрушения материалов и покрытий — биоповреждения. В настоящее время отечественные и зарубежные исследователи подчеркивают, что биоповреждения представляют собой эколого-технологи-ческую проблему. Она является комплексной в научном плане и многоотраслевой — в практическом. Основа научных исследований проблемы базируется на законах биологии и химии, материаловедческих и природоведческих дисциплинах. Рациональная борьба с биоповреждениями немыслима без изучения экологии микроорганизмов, особенностей их существования, а также без знаний физико-химических свойств материалов и условий эксплуатации машин, оборудования и сооружений, без понимания вопросов природоиспользования и необходимости защиты природы от загрязнений. За несколько миллиардов лет эволюции жизни на земле микроорганизмы получили способность быстрой адаптации к изменяющимся условиям их обитания и источникам питания. Только этим можно объяснить активность ряда микроорганизмов в отношении созданных человеком конструкций, приводящую к разрушению последних. [c.3]

    Образование молекулярного кислорода из воды в процессе фотосинтеза явилось, несомненно, важнейшим событием в эволюции и имело далеко идущие последствия. По мере накопления кислорода в атмосфере Земли облигатные анаэробы (для которых кислород токсичен) оста-.лись только в строго анаэробных средах, уступив место новым классам -бактерий, обладающих механизмами детоксикации кислорода и использования его для окисления сложных органических соединений с целью получения необходимой энергии. [c.26]

    Значение IS-элементов для эволюции бактерий связано с тем, что эти элементы при своих перемещениях инактивируют разл. гены или нарушают их нормальную регуляцию. Помимо прямого влияния на экспрессию гена (раз- вития признака, контролируемого данным геном) вследствие транспозиции инсерционной последовательности непосредственно в кодирующую часть гена или его регуляторную зону, эти М. г. э. могут влиять также на транскрипцию (биосинтез информационной РНК на матрице ДНК) окружающих их последовательностей ДНК генома. Это происходит вследствие того, что мн. IS-элементы содержат промоторные (инициирующие транскрипцию) и термина-торные (прекращающие транскрипцию) участки ДНК. Транспозиции IS-элементов могут вызывать слияние двух не [c.79]

    Природные экосистемы в ходе эволюции постоянно сталкиваются с такими загрязнителями, как нефтяные углеводороды. Несмотря на это, до начала XX века не наблюдалось глобальной деградации природных систем под действием этих загрязнений. Выведение из системы этих поллютантов строилось на их сорбции естественными сорбционными материалами и переведением их, например, из водной фазы в осадок, где они и подвергались дальнейшей эволюции под влиянием многочисленных видов бактерий, находящихся в данной экосистеме. Эти и некоторые другие особенности природных процессов самоочищения легли в основу технологий, упомянутых в данном разделе. [c.190]


    На следующей стадии эволюции появились, видимо, организмы, родственные современным фотосинтезирующим бактериям (пурпурным и зеленым) они могли использовать энергию солнечного света. Любопытно, что большинство этих (грамотрицательных) фотосинтезирующих бактерий—строгие анаэробы. В отличие от высших растений ни один из указанных микроорганизмов не выделяет кислорода. Напротив, для. восстановления двуокиси углерода в процессе фотосинтеза им необхо ДИМ водород, который они получают либо путем расщепления неорганических соединений типа H2S, тиосульфата или Нг, либо из органичен ских веществ. [c.25]

    Ископаемые остатки бактерий и сине-зеленых водорослей были найдены в отложениях, возраст которых, по геохимическим данным, превышает 3 млрд. лет. Возможно, в это же время появились первые эукариоты, давшие в результате эволюции свыше миллиона известных ныне видов. [c.38]

    Важность обмена генетическим материалом для эволюции прокариот подтверждается тем, что многие бактерии имеют другой механиз.м обмена генами — естественную трансформацию. В ходе этого процесса бактерии активно поглощают ДНК, оказавшуюся в среде. Если поглощенная ДНК гомологична внутриклеточной, то воз.можна рекомбинация между ними. Для того чтобы повысить вероятность попадания в клетку именно гомологичной ДНК, некоторые бактерии амеют систему дискриминации, узнающую определенную последовательность ДНК, часто встречающуюся у этих бактерий, но редко у других, и позвачяющую транспорт в клетку лишь тех. молекул ДНК, которые отмечены такой последовательностью. Проникновение в клетку произвольной ДНК из среды потенциально опасно таки.м путе.м могли бы проникать патогенные агенты, например вирусы. Видимо, поэтому при естественной трансформации в клетку проникает лишь одна линейная цепь ДНК, а вторая в ходе транспорта деградирует. В таком виде ДНК относительно безвредна она рекомбинирует с клеточной ДНК при наличии гомологичных участков, а при отсутствии гомологии, как правило, де- [c.128]

    До недавнего времени казалось, что колесо могло быть создано только человеческим разумом — в ходе естественной эволюции не могло возникнуть макроскопическое устройство для вращения вокруг оси. Однако выяснилось, что нечто вроде колеса имеется даже у бактерии Es heri hia oli. Каждая клетка Е. соИ имеет четыре длинных жгутика. Их вращательные движения позволяют клетке перемещаться. В основании жгутика, расположенном на клеточной стенке и мембране, имеется колесо — кольцо из [c.413]

    Цитохромы типа с могут способствовать выявлению эволюции метаболических путей. Цитохромы с вводят нас в обширную область прокариотов. В принципе структуры этих белков можно использовать для установления определенного порядка среди бактерий таким же образом, как митохондриальные цитохромы с были применены в таксономических целях к эукариотическим организмам. Первые попытки такой классификации бактерий уже сделаны [509, 571]. Однако, поскольку в бактериях может осуществляться переход межродового гена [507, 508], построение филогенетического дерева затрудняется генами, которые переходят из одной ветви в другую. [c.227]

    Какова функциональная роль плазмид и мобильных элементов бактерий Ниже будет рассмотрена существенная роль этих структур в эволюции бактерий, но эволюционные, т. е. отдаленные, преимущества вряд ли могут объяснить поддержание в бактериальных клетках мобильных элементов и плазмид в тех случаях, когда они не приносят непосредственных селективных выгод. Так, например, если считать, что в клетке поддерживается только функционально необходимый генетический материал, непонятно, почему плазмиды, несущие гены устойчивости к антибиотикам, встречаются не только в клинике, где эти антибиотики применяют, но и в других местах обитания, лишенных подобного селективного давления. Совсем непонятно, почему существуют плазмиды, вообще не приносящие никаких непосредственных преимуществ содержащим их клеткам, и IS-элементы. [c.122]

    Таким образом, процессы транскрипции и трансляции, служащие для выражения в онтогенезе генетической информации, не приводят к наследованию изменений, возникающих при их функционировании. Только изменения, происходящие в молекулах ДНК, могут сохраняться в ряду поколений, поскольку они воспроизводятся в процессе репликации. Следовательно, в основе эволюции прокариот лежит способность к изменению только их генетического материала. У прокариот весь генетический материал, необходимый для жизнедеятельности, локализован в одной хромосоме, т.е. бактериальная клетка гаплоидна. В определенных условиях в клетках бактерий может содержаться несколько копий хромосомы. [c.143]

    Регуляция аспартаткиназы у различных бактерий эволюция регуляторных механизмов [c.23]

    В 1650 г. церковники выполнили один из первых серьезных расчетов возраста Земли. На основе библейской генеалогии мифический день творения был отнесен к 4004г. до н.э. это означало, что возраст Земли в 1650 г. составлял 5654 года. Современные оценки, основанные на ядерной генеалогии, дают цифру, близкую к 4,5 млрд лет. Древнейшими живыми организмами, ископаемые остатки которых найдены до сих пор, были бактерии, существовавшие приблизительно 3,4 млрд. лет назад. К концу первого миллиарда лет истории нашей планеты химическая эволюция достигла стадии, на которой появились бактериоподобные организмы. Из этих организмов за последующие 3,4 млрд. лет развилось огромное многообразие живых организмов, существующих и в настоящее время. [c.436]

    Всемирном конгрессе по методологии науки в 1995 г во Флоренции мы представили работы, в которых удалось показать, что образованию сколь-нибудь сложного вещества предшествует информация об этом веществе. Развивая эту мысль, невозможно отрицать Бога. Творец знает о том, что будет и делает не возможное возможным. Более того, с позиции термодинамики удалось показать, что одновременно возможно возникновение форм жизни различных уровней организации высших и низших форм. Например, бактерий и растений. То есть, мир развивался не последовательно по дарвинской цепочке эволюции, а параллельно, как указано в библии. В Святом Писании сказано, что птицы, рыбы и пресмыкающиеся возникли одновременно. Библия соответствует настоящей науке, а наука - библии. Такие выдающиеся ученые, как Циолковский, Павлов, Флоренский были глубоко верующими людьми, вера которь1х не была сломлена большевиками. Аргументы атеистов исходят из обывательского по- [c.31]

    Установленные мною термодинамические закономерности поведения сложных систем показывают существование в них особого типа явлений, проявляющихся при больщой разносортности компонентов биосферы. Это особое -данное свыше распределение термодинамической вероятности и существование энтропии разнообразия. Это связано с особым размытым характером термодинамической вероятности событий в сложных системах, согласно закону (2.2). Это означает, что одновременно возможно возникновение форм жизни различных уровней организаций. Например, бактерий и растений. То есть, мир развивался не последовательно ПО дарвинской цепочке эволюции от простого к сложному, а параллельно-последовательной, как указано в Библии. В Святом [c.53]

    О группе токсичных для бактерий белков (колицинов) уже шла речь в разд. Г, 7. Они, по-видимому, также связываются со специальными рецепторами на внешней мембране бактерий типа Е. соИ. Нейландс и его сотрудники обнаружили, что у Е. соН рецептор колицина М служит также рецептором и для сидерохромного пептида — феррохрома (дополнение 14-В), и для бактериофага Т5. С этим же участком мембраны связывается антибиотик альбомицин. Существует предположение, что на ранних этапах эволюции у бактерий появились молекулы, обладающие способностью к образованию хелатных комплексов с железом, причем размер этих комплексов постепенно увеличился до такой степени, что они утратили способность диффундировать через наружную мембрану в клетку. В результате возникли специфические системы переноса, которые позднее были использованы фагами к. штаммами, продуцирующими колицин . [c.306]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    П не являются неотъемлемой составной частью бактериальной клетки, однако их наличие расширяет ее генетич возможности П позвотяют бактериям получать энергию необычными способами, напр окислением водорода или метана П играют важную роль в эволюции бактерий, особенно в их быстрой адаптации к меняющимся факторам среды [c.553]

    Продуцентами этих кислот могут быть бактерии, плесневые грибы или дрожжи. Микроорганизмы, продуцирующие молочную кислоту, а также вызывающие спиртовое брожение, в ходе эволюции приспособились к анаэробному образу жизни. Уксусная и лимонная кислоты в свою очередь образуются в аэробных условиях. По-видимому, кислоты играют определенную роль в борьбе с конкурирующей микрофлорой, а также являются резервными источниками углерода. Так, Aspergillus niger после использования сахара могут использовать в качестве субстрата лимонную кислоту. В свою очередь уксуснокислые бактерии при отсутствии спирта в среде ассимилируют уксусную кислоту, окисляя ее до воды и СО2. [c.143]

    Имеется общая проблема единства и эволюционного происхождения различных фотобиологических процессов. Как мы видели, каротиноиды фигурируют и в фотосинтетических системах, и в фоторецепторах бактерий, и в органах зрения как позвоночных, так и беспо.чвоночных. В то же время имеется сходство между фотофорами биолюминесцентных систем и фоторецепторами. Это не означает, конечно, их единого эволюционного происхождения с последующей дивергенцией. Скорее можно думать о конвергенции — о совпадении структур и функций систем различного происхождения. Так, нельзя считать, что сходство глаза человека и осьминога свидетельствует об их общем предке. Напротив, это сходство означает, что эволюция разных филогенетических ветвей может решать одинаковые задачи сходными способами, так как число этих способов принципиально ограничено. [c.482]

    Новые наследственные признаки возникают в генофонде в результате генных мутаций. Последние создают фонд наследственных изменений, служащих исходным материалом (сырьем) для эволюции. Вероятно, мутации являются и самым первым видом наследственной изменчивости, возникшим одновременно с началом функционирования ДНК как информационной молекулы, поскольку для них не нужно никаких дополнительных структур и механизмов. Способность к мутированию заложена в химическом строении молекулы ДНК, а проявление мутационных изменений идет по тем же каналам, что и обычная генетическая информация клетки. Возможно, в течение длительного времени мутационные изменения были единственной формой изменчивости. На протяжении миллионов лет мутации в сочетании с естественным отбором сыфали решающую роль в появлении тех видов бактерий, которые известны сейчас. [c.153]


Смотреть страницы где упоминается термин Бактерии эволюция: [c.299]    [c.192]    [c.26]    [c.61]    [c.85]    [c.219]    [c.212]    [c.192]    [c.377]    [c.212]    [c.256]    [c.106]    [c.2]    [c.144]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Ацидофильные бактерии роль в эволюции

Бактерии эволюция метаболизма

Найдя неисчерпаемый источник восстановителей, фотосинтезирующие бактерии смогли преодолеть серьезный кризис в эволюции клетки

Экспериментальная эволюция у бактерий



© 2024 chem21.info Реклама на сайте