Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки наследственные различия

    Различия в структуре белков обусловливают не только видовые особенности индивидуумы, относящиеся к одному и тому же виду, также могут быть неодинаковыми в этом отношении. Тяжелые наследственные болезни (например, серповидноклеточная анемия) возникают иногда из-за замены в определенном белке только одной аминокислоты. [c.12]

    В зависимости от строения моносахарида, входящего в состав нуклеиновых кислот (НК), различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Необходимость подобной классификации определяется не только различным химическим строением ДНК и РНК, но и различием выполняемых ими биологических функций. Дезоксирибонуклеиновые кислоты ответственны за передачу наследственных признаков в ряду поколений живых организмов, поэтому конкретное строение ДНК каждого вида животных организмов будет строго специфично, однако общая структура ДНК одинакова для многих типов клеток. Рибонуклеиновые кислоты участвуют в процессе биосинтеза белка. [c.613]


    Различают два типа нуклеиновых кислот, а именно дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Первые находятся в ядрах клеток, другие — в хромосомах и цитоплазме клеток. Молекулы ДНК переносят наследственную информацию, которая закодирована в их структуре. Они способны репродуцироваться и служат матрицей при синтезах РНК. Рибонуклеиновые кислоты передают полученную от ДНК информацию, управляя синтезом тысяч различных белков, содержащихся в живых клетках. В настоящее время эти процессы детально исследованы на молекулярном уровне, и мы отсылаем интересующихся подробностями к современной биохимической литературе. [c.216]

    ИММУНОХИМИЯ — наука, изучающая химич. процессы, с к-рыми связана невосприимчивость организма к инфекционному заражению (и м м у н и -т 0 т), а также повышенная чувствительность к повторному введению в организм нек-рых веществ. Невосприимчивость может быть обусловлена врожденными особенностями организма (естественный иммунитет), а также создана искусственно (приобретенный иммунитет). Химич. основы естественного иммунитета могут существенно различаться в случае разных инфекций (напр., наличие у нек-рых организмов специальных ферментов, разрушающих биосубстраты бактерий наследственно закрепленная аномалия гемоглобина, пагубно влияющая на возбудителя малярии, и т. п.). Главным предметом изучения И. является приобретенный иммунитет, в основе к-рого лежит способность организма, в ответ на попадание в него ряда веществ антигенов) синтезировать специфич. белки — антитела, к-рые взаимодействуют именно с этими веществами или веществами, близкими к пим ио структуре. Основные проблемы И. изучение химич. природы антигенов, механизма биосинтеза антител, изучение взаимодействия между антигенами и антителами, создание химич. методов определения содержания антител и выделения их из сыворотки в чистом виде, изучение структуры антител. [c.111]

    Как хорошо известно, существуют значительные видовые различия потребности в белках и аминокислотах, определяемые наследственностью. Заслуживает внимания и то, что количество аминокислот, необходимое взрослым людям для поддержания веса, заметно отличается от количества, которое необходимо детям в период роста. [c.196]

    Клетка регулирует функции митохондрий и более обычными способами. У млекопитающих главным метаболическим путем переработки азотсодержащих продуктов обмена служит цикл мочевины. Образующаяся при этом мочевина выводится с мочой. Ферменты, кодируемые ядерным геномом, катализируют несколько этапов этого цикла в митохондриальном матриксе. Мочевина образуется лишь в некоторых органах, таких как печень, и ферменты цикла мочевины синтезируются и переходят в митохондрии только в этих органах. Кроме того, дыхательные ферментные комплексы, входящие в состав внутренней митохондриальной мембраны, у млекопитающих содержат несколько тканеспецифических субъединиц, которые кодируются ядром и, вероятно, действуют как регуляторы переноса электронов. Например, > некоторых людей с наследственным заболеванием мышц одна из субъединиц цитохромоксидазы дефектна поскольку эта субъединица специфична для скелетных мышц, волокна сердечной мышцы у этих людей функционируют нормально, что позволяет таким больным выживать Как и следовало ожидать, тканеспецифические различия свойственны и хлоропластным белкам, кодируемым ядерными генами [c.497]


    НУКЛЕИНОВЫЕ КИСЛОТЫ (лат. nu leus — ядро) — высокомолекулярные органические соединения биологического происхождения, входящие в состав белков-нуклеопротоидов и играющие важную роль в процессах жизнедеятельности всех живых организмов, Н. к. построены из большого количества мононуклеотидов, в состав которых входят фосфорная кислота и так называемые пуриновые и пиримидиновые основания (нуклеоз ды). Различают дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. ДНК сосредоточена преимущественно в ядрах всех клеток, в хромосомах РНК находится главным образом в цитоплазме. Считают, что ДНК имеет большое значение в передаче наследственных свойств организмов, а РНК — в синтезе белков. [c.177]

    Эти два подкласса четко различаются как по строению входящих в них нуклеотидов, так и по их биологической функции. Нуклеиновые кислоты (обычно сокращенно обозначаемые НК) являются полимерными соединениями с кочень высоким молекулярным весом, достигающим 6 500 000—13 000 000. В зависимости ст того, содержат ли они в своем составе в качестве углеводного комионеита рибозу плп дезоксирибозу, онп называются рибонуклеиновыми кислотами (РНК) или дезоксирибонуклеиновыми кислотами (ДНК). Необходимость такого раздсотеиия диктуется не только различиями в химическом поведении РР1К и ДНК, но и различием их биологических функции. Н клениовые кислоты в комплексах с белками, известных под общи.м названием нуклеопротеидов, играют ключевую роль в процессах жизнедеятельности самых различных организмов. ДНК являются тем первичным химическим материалом, который лежит в основе сложного и далеко еще полностью не выясненного процесса передачи наследственных признаков при делении клетки, а следовательно, и всех процессов, связанных с размножением. Хотя о механизме такой передачи, механизме в чисто химическом смысле этого слова, еще мало что известно, однако решающая роль ДНК в процессе передачи биологического кода не вызывает никакого сомнения и может считаться в настоящее время экспериментально установленным фактом. [c.174]

    Методология, применяемая для изучения наследственности белков или ферментов, общепринята. Убедившись в отсутствии влияния среды (понимаемой в широком смысле) на электрофо-реграммах, анализируют семя за семенем (а иногда половинки семени) поколений р1, р2 (даже Рз и обратного скрещивания), полученных в результате скрещивания двух сортов, имеющих различия по их электрофореграммам. [c.49]

    Колбочки, являющиеся рецепторами цветового зрения, устроены значительно сложнее, чем палочки, но механизм их действия в принципе такой же. Мы уже упоминали, что колбочки и палочки содержат одинаковый хромофор. Различия в спектрах поглощения (рис. 1.3) обусловлены строением опсинов, с которыми связан ретиналь. О структуре этих белков в колбочках известно еще меньше, чем об опсине палочек. Предполагается, что они закодированы в различных генах и могут, следовательно, иметь различные аминокислотные последовательности. Это подтверждается тем фактом, что цветовая слепота (дальтонизм) имеет рецессивный наследственный характер и связана с полом. Около 1% мужчин не различают красный цвет и 2% —зеленый, тогда как у женщин дальтонизм встречается значительно реже. Все три типа колбочек имеют и морфологические отличия от палочек. Помимо того что колбочки конические по форме, они отличаются от палочек и по структуре своих дисковых мембран, которые у них представляют собой не отдельные органеллы, а просто впячивания плазматической мембраны, т. е. плазматические и дисковые мембраны образуют континуум. Эти отличия колбочек учтены в модели фоторецепции Хагинса (рис. 1.7а, справа) связь между поглощением света и закрыванием натриевых каналов здесь опять-таки осуществляет кальций, который [c.19]

    Представление об изменчивости и наследственности бактерий нельзя составить без знания некоторых положений молекулярной генетики прокариотической клетки. В основе процессов приспособления микробных культур к изменяюшимся экологическим условиям лежат изменчивость и наследственность, являющиеся разделами генетики бактерий. При изложении цитологии бактериальной клетки уже рассматривалась структура ДНК и РНК и их роль в жизни клетки. Характерное строение ДНК сохраняется у каждого вида и передается потомству из поколения в поколение, как и другие признаки. ДНК бактерий представляет собой двунитчатую спираль, замыкающуюся в кольцо. Кольчатая нить ДНК бактерий, расположенная в ну-клеоиде, не содержит белка. Такое кольцо ДНК соответствует хромосоме эукариотической клетки. Известно, что в хромосоме эукариотических клеток, кроме ДНК, всегда содержится белковый компонент. Отсюда следует, что понятие хромосомы у эукариотов несколько отлично от понятия хромосомы бактерий. Нить ДНК, представляющая собой хромосому бактерий, разумеется, у разных видов различается. Сахарофосфатный компонент ДНК у всех видов бактерий одинаков расположение азотистых оснований и их комбинация, напротив, различаются у разных видов. [c.102]

    В гл. 1П указывалось, что первичная структура некоторых полипептид-ных гормонов (в частности, вазопрессина и меланоцитстимулирующего гормона) у разных биологических видов не вполне одинакова. Такая же видовая специфичность наблюдается и у белков. Сэнгер и его сотрудники, работая с препаратами инсулина, выделенными от разных видов млекопитающих, во всех случаях обнаружили те или иные вариации либо в А-цепи (на участке, ограниченном дисульфидным мостиком), либо в В-цепи (на ее карбоксильном конце). В препаратах цитохрома с, выделенных от разных видов, также были обнаружены индивидуальные различия, определяющиеся природой аминокислот в ключевом пептидном сегменте. Помимо этих вариаций, обусловленных видовой специфичностью, встречаются также и различия в белках одного и того же вида, возникшие в результате мутаций. Большинство сведений о влиянии мутаций на структуру белка почерпнуто нами из прекрасных работ Ингрэма. Ингрэм и его сотрудники показали, что нормальный гемоглобин взрослого человека и гемоглобин больных таким наследственным заболеванием, как серповидноклеточная анемия, отличаются только тем, что в определенном положении р-цепи остаток глутаминовой кислоты в аномальном гемоглобине заменен валином. (Напомним, что молекула гемоглобина состоит из двух пар идентичных цепей а- и Р-цепей в гемоглобине взрослого человека или а- и у-цепей в гемоглобине плода.) [c.96]


    НУКЛЕИНОВЫЕ КИСЛОТЫ. Высокомолекулярные органические соединения, входящие в состав сложных белков — нуклеопротеидов, играющих важную роль в моцессах жизнедеятельности всех живых существ. Построены из большого количества мононуклеотидов, в состав котш)ЫХ входят фосфорная кислота, углеводы (ри-боза или дезоксирибоза) и так называемые пуриновые и пиримидиновые основания. Различают дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК). РНК содержит углевод рибозу, а ДНК —частично восстановленную рибозу — дезоксирибозу. Они отличаются и составом оснований. В те и другие входят цитозин, аденин и гуанин, но в РНК содержится еще урацил, а в ДНК — тимин. ДНК сосредоточена преимущественно в ядрах всех клеток, в хромосомах, РНК находится главным образом в цитоплазме. ДНК имеет большое значение в передаче наследственных свойств организмов. РНК играет большую роль в синтезе белков. [c.203]

    Остается самое большое различие между эу- и прокариотами в организации наследственного аппарата — окруженное ядерной мембраной оформленное ядро у эукарий, наличие гистонов и упаковка ДНК в нуклеосомы. У бактерий не найдены пока гис-тоны и нуклеосомы, поэтому упаковка ДНК у них происходит иначе. С другой стороны, некоторые археи имеют гистоноподоб-ные белки и стабильные нуклеосомы, в то время как некоторые одноклеточные эукариоты лишены и того и другого Таким образом, на уровне организации хромосом различия между про- и эукариотами могут быть не столь явными, как это ранее предполагалось. [c.28]

    Поэтому парадокс фермент не может делать фермент приводит к следующему выводу клетки обязаны своими признаками тому, что они обладают самовоспроизводящимися информационными элементами, которые и управляют синтезом ферментов. Однако ранее было показано, что признаками клетки управляют единицы наследственности, или гены. Следовательно, мы можем отождествить эти информационные элементы с генами. Иными словами, на поставленный в гл. I вопрос Каким образом гены ухитряются управлять специфическими физиологическими процессами клетки со своего ядерного трона можно ответить так гены управляют сборкой аминокислот в полипептидные цепи с данной первичной структурой. Увы, этот довод а priori оказалось возможным привести лишь в 50-х годах, когда уже давно было очевидно из самых разных предпосылок, что между генами и синтезом ферментов существует связь. Так, лишь полвека спустя после повторного открытия статьи Менделя было предсказано существование генов на основе данных о структуре и синтезе белков. Не следует умалять теоретический интерес этого предсказания , хотя оно и было ретроспективным. До того как был выдвинут этот аргумент, концепция гена неизбежно зависела от различия в признаках. Теперь она освободилась от этой зависимости. Представить себе менделевский ген можно было, только исходя из результатов опытов по скрещиванию двух различных аллельных вариантов, например гладких и морщинистых сем 1Н. Существование же гена как детерминанта белковой структуры логически вытекает уже из самого факта существования полипептидной цепи с данной аминокислотной последовательностью. [c.113]

    Публикация выводов Эйвери, Мак-Леода и Мак-Карти в 1944 г, была принята с большим удивлением и недоверием, так как едва ли кто-либо ранее придавал ДНК такую информационную роль. Существовало предположение, что ДНК выполняет какую-то функцию в наследственных процессах, особенно после того, как Фёльген в 1924 г. показал, что ДНК является основным компонентом хромосомы. Но существовавшие тогда представления о молекулярной природе ДНК делали почти невероятным вывод, согласно которому ДНК могла быть носителем наследственной информации. Во-первых, начиная с 1930 г. существовало общепризнанное мнение, что ДНК представляет собой простой тетрануклеотид, состоящий из остатков адениловой, гуаниловой, тимидиловой и цитидиловой кислот (фиг. 73). Во-вторых, даже когда в начале 40-х годов наконец установили, что молекулярная масса ДНК на самом деле значительно выше, чем это следует из тетрануклеотидной теории, многие еще продолжали верить, что тетрануклеотид служит основной повторяющейся единицей большого полимера ДНК, в котором четыре пуриновых и пиримидиновых основания чередуются, образуя периодическую последовательность. ДНК, следовательно, рассматривалась как монотонно однообразная макромолекула, которая, подобно другим монотонным полимерам, таким, как крахмал (см. гл. II), всегда одинакова, независимо от природы ее биологического источника. Вездесущему присутствию ДНК в хромосомах большей частью приписывали чисто физиологическую или структурную роль. В то же время считали, что именно хромосомный белок придает информационную роль генам, поскольку еще в начале века были определены большие различия в специфичности структуры гетеро-логичных белков одного и того же организма или гомологичных белков различных организмов. Эйвери, Мак-Леод и Мак-Карти понимали во всей полноте трудность обоснования генетической роли ДНК и в заключительной части своей работы высказали следующее утверждение Если результаты представленного исследования о природе трансформирующего начала подтвердятся, то придется признать, что нуклеиновые кислоты обладают биологической специфичностью, химическая основа которой еще не установлена . [c.159]

    Многие из белков, синтезируемых на рибосомах, регулируют скорость определенных клеточных реакций. Такие белки, обладающие специфической каталитической активностью, называются ферментами. Ферменты играют в клетке ключевую роль именно от них зависит в конечном счете вся природа клетки, поскольку они регулируют химические реакции, в которых синтезируются те или иные клеточные компоненты. У некоторых растений, например, наследственно закрепленное различие между разновидностями с красными и белыми цветками обусловле- [c.43]

    Новый принцип генетического анализа. Обнаружение мультигенных семейств мышечных белков дало в руки исследователей новый принцип генетического анализа. До недавнего времени анализ генов начинался с выявления генетической изменчивости. Ее можно констатировать на фенотипическом уровне, например благодаря наличию наследственной болезни, или на некотором промежуточном уровне-по отсутствию функционального белка, по электрофоретическим вариантам белка или по разным антигенным детерминантам на клеточной поверхности. Фенотипическую изменчивость затем связывали с соответствующим полиморфизмом на генном уровне. Генетические варианты часто служат экспериментальным инструментом для раскрытия основных механизмов действия гена. Однако для семейства актиновых или миозиновых генов неизвестны ни нормальные, ни патологические генетические варианты. Генетический анализ начинается с белка и генов как таковых безотносительно к межиндивидуальным различиям. Это стало возможным благодаря тому, что теперь в распоряжении исследователей имеется, если нужно, большое количество матричной РНК для этих белков. В настоящее время перед медицинскими генетиками стоит задача выявить наследственные заболевания, которые могут быть вызваны генетическими изменениями актиновых или миозиновых генов. Возможно, однако (хотя и вряд ли), что такие болезни просто не существуют-либо потому что любой генетический дефект актина или миозина ле-тален, либо потому что экспрессия гена в мультигенном семействе настолько эластична , что мутации в одном локусе компенсируются активностью других локусов. [c.139]

    Можно сказать, что первый шаг в этом направлении сделал А. Гэррод. Он разработал концепцию врожденных нарушений метаболизма (разд. 3.6). Позже было показано, что гены определяют структуру белков и многие распространенные наследственные болезни связаны именно с дефектами ферментов. Введение в практику исследований методов анализа белков позволило выявлять изменчивость на уровне аминокислотных последовательностей, а после того как в 1953 г. Уотсон и Крик раскрыли структуру ДНК [1347], и был расшифрован генетический код, стало ясно, что различия в аминокислотных последовательностях объясняются заменами нуклеотидов в ДНК. [c.5]

    Специфическая функция большинства белков решающим образом зависит от немногих аминокислотных позиций. Функциональные ограничения носят столь общий характер, что они вполне совместимы с множеством различных аминокислот например, трехмерная структура белка может сохраняться при самых разнообразных аминокислотных заменах. При этом в результате генетического дрейфа может происходить сдвиг частот тех или иных оснований, что в свою очередь приводит к возникновению полиморфизма на уровне белков. Системы полиморфизма детерминируют небольшие функциональные различия, не влияющие или лишь незначительно влияющие на приспособленность (разд. 6.2.1.1) их носителей, и вызывают действие естест-вешого отбора. При изменении экологических условий полиморфные системы могут стать источником наследственной изменчивости и обеспечить быструю адаптацию. С другой стороны, тот факт, что для большинства систем полиморфизма селективные влияния пока неизвестны, не означает, что отбор отсутствовал. Просто его трудно обнаружить, особенно среди населения экономически развитых стран, где современная цивилизация значительно изменила условия жизни людей, исключив некоторые потенциально весьма существенные селективные факторы, например инфекционные болезни и недоедание. Для выяснения соответствующих селективных механизмов необходимо сформулировать специальные, обоснованные с функциональной точки зрения гипотезы. Это не означает. [c.25]

    Для изучения свойств нуклеиновых кислот н явлений наследственности на молекулярном уровне наиболее широко были использованы фаг Т2, размножающийся внутри клеток кишечной палочки Es heri hia oli, и вирус табачной мозаики (ВТМ). Частица фага Т2 состоит наполовину из ДНК и наполовину из различных белков. При сильном увеличении у него хорошо различается шестиугольная головка и нитевидный хвост, в конце его имеется пластинка, к которой прикрепляются хвостовые нити. Внутри головки помещается туго скрученная в спираль очень длинная нить ДНК. [c.133]

    Следовательно, формы и функции всех организмов, их индивидуальные и видимые различия определяются комбинацией четырех азотистых оснований молекулы ДНК. Последовательность расположения азотистых оснований в ДНК, определяющая размещение аминокислот в синтезируемом белке, называется генвтиче- ским кодом, или кодом наследственности. [c.151]

    Выше уже отмечалось сходство анафилаксии у животных, описанной Портье и Рише (Portier, Ri het) в 1902 г., с сенной лихорадкой и астмой у человека. Однако у животных введение чужеродных белков или токсинов приводит к образованию преципитирующих антител в 90% случаев, тогда как у человека после воздействия присутствующих в воздухе аллергенов сенсибилизация наблюдается лишь в 10—20% случаев. Другое существенное различие заоючается в том, что аллергия у человека, но не анафилаксия у животных (насколько известно), тесно связана с наследственностью. Таким образом, исходные механизмы аллергических реакций у животных и атопии у человека, по-видимому, различны. [c.418]

    Кроме того, существует явление так называемой микробной мимикрии — в ходе приспособления к человеку у микроба появляется способность вырабатывать вещества, антигенно схожие с антигеном человека. Одеваясь таким веществом, микробный паразит лишает своего хозяина способности вырабатывать антитела и беспрепятственно размножается в нем. Но гибель хозяев вызывает среди них естественный отбор, а именно распространение наследственного фактора, изменяющего антиген, под которого замаскировался микроб. Неизвестно, таков ли именно механизм распространения наследственного фактора группы крови В из известной системы ABO. Но не без оснований предполагается, что люди с группой крови О особенно восприимчивы к чуме достоверно доказано, что лица группы крови А почти в 2,5 раза восприимчивее лиц О и В к оспе, и четко известно, что именно в районах максимальной частоты и чумных, и оспенных эпидемий группа крови В особенно широко распространена. Если раньше казалось, что антигенные различия между людьми сводятся к различиям по системам ABO, резус-положительность или резус-отрицательность, MN, Рр и еще паре десятков систем, то в дальнейшем не только было описано более сотни таких, как их принято называть балансированно-полиморфных систем антигенов эритроцитов, белков и ферментов плазмы, и клеток в крови, но и было подсчитано, что общее число еще не открытых систем такого рода должно исчисляться очень многими тысячами. Для каждой балансированнополиморфной системы характерно, что наряду с наиболее распространенным нормальным геном (А ) почти с такой же частотой среди населения многих стран встречается 2-3-4 его мутантных варианта (А , А , А ). Крайне существенно, что для достижения таких больших частот мутантные варианты (А , А , А ) должны были не только мутационно возникнуть, но и подхватываться, распространяться естественным отбором. Но если простоты ради принять, что частота каждого из нормальных генов А, В, С, D , Е р G , Н составляет 0,6, а частота каждого из их аллелей А , В, С, D , Е , F , G , Н — 0,4, то окажется  [c.194]

    В решении этого вопроса помогло исследование другой наследственной болезни человека — серповидно-клеточной анемии. Л. Полинг (СЯ1А) в 1949 г. обнаружил, что гемоглобин таких больных отличается от гемоглобина здоровых людей по электрофоретической подвижности. Как стало ясно позднее, это различие обусловлено заменой 6Glu Val в (3-цепи гемоглобина. Отсюда следовал вывод, что ген определяет первичную структуру белков. При этом информация, записанная с помощью определенного чередования нуклеотидных остатков, переводится в информацию, записанную чередованием аминокислотных остатков. Это можно сравнить с переводом записи, сделанной азбукой Морзе, на буквенную запись. [c.126]

    Причиной наследственных болезней являются изменения (мутации) ДНК. В результате появляются аллельные варианты белков, которые могут различаться по функциональной способности. Например, HbS хуже выполняет функцию транспорта кислорода, чем НЬА. Если функция белка нарушена существенно, то плохой аллель проявляется как наследственная болезнь (наследственная протеино-патия). По механизму возникновения наследственные болезни можно разделить на две группы. Наследственная болезнь может возникнуть в результате мутации, которая произошла в гаметах или зиготе, давших начало данной особи. Это первая группа наследственных болезней, первичные мутации. Если первичная мутация нелетальна до репродуктивного возраста, то мутантный аллель может передаваться последующим поколениям и тоже проявляется как болезнь. Это вторая группа наследственных болезней. [c.168]


Смотреть страницы где упоминается термин Белки наследственные различия: [c.192]    [c.111]    [c.128]    [c.93]    [c.42]    [c.347]    [c.39]    [c.170]    [c.60]   
Электрофорез в разделении биологических макромолекул (1982) -- [ c.336 , c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Наследственность

Различие



© 2025 chem21.info Реклама на сайте