Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кооперативность перехода спираль—клубок в полипептидах

    В этом и следующем параграфах мы изложим, следуя преимущественно работам Зимма [ -теорию переходов спираль — клубок в молекулах полипептидов, развитую в указанных работах и основывающуюся на матричном методе модели Изинга для одномерной кооперативной системы. Молекулы синтетических полипептидов характеризуются общей формулой (—СО— HR—NH—) . Типичной вторичной струк- [c.294]


    Недавно Шварц предложил теорию химической релаксации при кооперативных конформационных переходах в линейных биополимерах [128]. Исследована релаксация в переходах спираль—клубок в полипептидах на основе модели Изинга. Теория применима как к коротким, так и к длинным цепям. Показано, что конформационный переход контролируется наибольшим временем релаксации. [c.479]

    Остатки с низкими относительными статистическими весами значительно укорачивают среднюю длину спирали. Чтобы оценить спиральный потенциал данного белка, было использовано одно значение параметра инициации а = 5 10 (разд. А.4). Кроме того, были введены три различные значения х для всех типов остатков. Так, 5 -= 0,385 соответствовало остаткам, прерывающим спираль (В), 5 1, 00 — индифферентным к спирали (/) и з=1,5 — образующим спираль (Н) (табл. 6.1). Значения а и х получают по наклонам и температурным переходам зависимостей, описывающих переходы спираль — клубок в синтетических полипептидах, используя уравнения (А. 18) и (А.20). Спиральная конформация предсказывается для всех положений остатков I, для которых / , больше средней величины В результате получаются непрерывные потенциальные функции, поскольку уравнение (6.2) учитывает кооперативность модели Зимма — Брэгга, согласно которой спирали должны иметь определенную длину (рис. А. 1). Этот метод предсказания дает спиральные сегменты длиной около 10 остатков, что намного меньше длины, ожидаемой для данного значения а гомополимеров при 5= 1, т. е. Ь 1/"5 10 = 40 (уравнение (А.17)). Такое укорочение спирали является следствием включения остатков с низкими значениями 5. [c.139]

    Существенно иная ситуация имеет место в теории переходов спираль—клубок. Благодаря тому, что само наличие таких переходов определяется взаимозависимостью состояний индивидуальных мономерных единиц макромолекулы,., уже для построения модельной теории оказалось необходимой статистика одномерных кооперативных систем. Существующие теории переходов спираль—клубок в молекулах, полипептидов и полинуклеотидов претендуют лишь на качественное объяснение резкости, переходов, зависимости температуры перехода от состава растворителя, pH и ионной силы раствора, внешней силы и т. п. Они не ставят своей целью оценку параметров, характеризующих теплоту и энтропию перехода, а также степень его кооперативности. Фактически существующие теории лишь иллюстрируют то-обстоятельство, что переход спираль—клубок носит тем более резкий характер, чем больше свободная энергия инициирования спирального участка цепи, но не пытаются объяснить, почему эта свободная энергия так велика в реальных полимерных цепях. [c.385]


    Применение последнего позволяет работать с очень разбавленными (порядка 10 М) растворами полипептида, избегая межмоле-кулярной ассоциации, и фиксировать не только переходы статистический клубок —а-спираль, но и следить за содержанием звеньев, существующих в р-форме, если таковые имеются. Известно, что в отсутствие поверхностно-активных ионов поли- -лизин в водном растворе при pH < 9,0 принимает конформации положительно заряженных статистических клубков. В интервале pH 9,0—9,8 происходит депротонирование аминогрупп и кооперативный конформационный переход статистический клубок а-спираль. При pH > > 10 макромолекулы существуют в а-спиральной конформации. Добавление додецилсульфата натрия совершенно изменяет картину. Во всем интервале pH < 11,6 оно приводит к возникновению компактных областей внутримолекулярной Р-структуры с антипарал-лельной ориентацией цепей. Таким образом, гидрофобные скрепки из противоиопов навязывают макромолекулам участки упорядоченной структуры, которая для свободных полипептидов в водных растворах при нормальной температуре вообще не характерна. Равновесное содержание Р-формы определяется мольным соотношением додецилсульфата и поли- -лизина (п) и величиной pH. На рис. 4 представлены зависимости содержания Р-формы (в %) [c.290]

    Узость интервала конформационного перехода обусловлена его кооперативным характером, выражающимся в том, что перестройка конформации в отдельной мономерной единице не приводит к выигрышу свободной энергии, для которого необходимо одновременное изменение конформаций большой группы мономерных единиц. В частности, для перехода спираль—клубок кооперативность связана с дополнительной энергией на стыках между спиральными и клубкообразными участками, обусловленной для полипептидов в конформации а-спирали необходимостью разорвать три внутримолекулярные водородные связи, чтобы первая мономерная единица в середине цепи приобрела гибкость. Поэтому спиральные и клубкообразные участки в молекулах в области перехода спираль—клубок содержат десятки последовательных мономерных единиц. В то же время переход спираль — клубок в молекулах высокой степени полимеризации не происходит по принципу все или ничего , в каждой молекуле сосуществуют спиральные и клубкообразные области. [c.20]

    Следует отметить, что кооперативный характер разрыва или образования Н-связей в принципе характерен для макромолекул. Такой характер имеет разрушение и образование полимер-полимерных комплексов в растворах [219], переходы спираль-клубок в полипептидах и белках под действием денатурирующих агентов [228] и т. п. [c.151]

    П. Льюис и Г. Шерага впервые предложили рассчитывать профили вероятности спирального содержания развернутой белковой цепи с помощью параметров 8 и а, найденных экспериментально из кривых плавления переходов спираль-клубок синтетических полипептидов [74]. Они полагали, что поиск корреляции между рассчитанными таким образом профилями вероятности содержания а-спиралей для денатурированных белков и экспериментально наблюдаемыми а-спиральными областями в нативной структуре окажется более перспективным по сравнению с попытками установить связь с помощью статистического анализа между аминокислотной последовательностью и вторичными структурами, а также между последними и третичной структурой. Предполагается следующая схема свертывания белковой цепи в глобулу. Первоначально на некоторых участках полностью развернутой белковой цепи возникают а-спирали. Регулярное свертывание цепи происходит не за счет кооперативных взаимодействий остатков, а в соответствии с потенцией отдельных аминокислот. Далее, флуктуация цепи в разделяющих спирали областях, специфика которых, согласно [c.251]

    Конформационные переходы в белках и полипептидах имеют большое биологическое значение. Наиболее полно изученное конформационное изменение — это переход а-спираль — клубок в полипептидах его анализ весьма полезен для понимания конформационного равновесия в других системах. Переход спираль — клубок может быть вызван изменением температуры или состава растворителя. В случае высокомолекулярных полипептидов он происходит в узком диапазоне значений этих параметров, т.е. является кооперативным процессом. Кооперативность можно качественно объяснить стерическими, энергетическими и статистическими ограничениями в а-спиральных и клубкообразных конформациях, которые способствуют росту уже существующих спиралей, а не образованию новых, рассеянных по всей цепи спиральных участков. [c.206]

    Физической основой переходов типа спираль — клубок является тот факт, что состояние макромолекулы, в котором мономерные единицы участвуют во внутримолекулярных водородных связях, обычно является энергетически более выгодным, тогда как состояние свободной макромолекулы более выгодно энтропийно из-за ее гибкости. Поэтому свободные энергии этих двух состояний различным образом меняются при изменении температуры, состава растворителя (например, если его молекулы способны к образованию водородных связей с макромолекулами) или pH раствора (если ионигация мономерных единиц вносит дополнительный энергетический эффект). Температуре перехода соответствует равенство свободных энергий двух состояний. Кооперативный характер перехода, проявляющийся в узости его интервала, обусловлен. как уже отмечалось выше, сильной зависимостью изменения свободной энергии молекулы при образовании водородной связи в одной из мономерных единиц от наличия или отсутствия водородной связи в соседних с ней мономерных единицах. Эта кооперативность, во всяком случае для молекул полипептидов, носит, по-видимому, чисто энтропийный характер (см. 23). [c.293]


    Параметр кооперативности а, вводимый при рассмотрении переходов типа спираль — клубок в полипептидах или полинуклеотидах [16] и являющийся мерой числа звеньев, входящих [c.59]

    Линейный массив с взаимодействиями между ближайшими соседями впервые описан Айзингом. Упрощения функции распределения, помимо учтенных в уравнении (А.2), основаны на предположении об отсутствии взаимодействия между различными остатками. Это совершенно неверно в случае а-спиралей, поскольку в них существуют водородные связи между остатками / и 3 (рис. 5.4). Кроме того, кривые, описывающие переходы спираль — клубок в синтетических полипептидах [328, 787], имеют сигмоидальный характер, что указывает на кооперативность. Чтобы учесть этот факт, необходимо ввести иные аппроксимации функции распределения. Для подобного случая, а именно для линейного массива ферромагнетиков с взаимодействиями между ближайшими соседями, аппроксимация предложена Айзингом [788]. [c.295]

    Переход спираль — клубок можно вызвать и повышением температуры, поскольку возникновение водородных связей является экзотермическим процессом. Такой переход для ноли-у-бензоилглютамата изображен на рис. 24. И здесь он носит очень острый характер для высокомолекулярного полипептида (кривая 1) н достигает завершения в интервале порядка 5 Так как образование водородных связей сопровождается незначительными тепловыми изменениями (1,4 ккал1моль), то не должно быть резкого перехода спираль — клубок, и для каждой температуры должно существовать некоторое равновесное отношение спирализованных и неспирализованных звеньев цепи, плавно меняющееся с изменением температуры. Причина резкости перехода спираль — клубок заключается в его кооперативности — в одновременном переходе многих частиц (звеньев цепи белка в данном случае) из упорядоченного состояния в неупорядоченное. В свою очередь эта одновременность перехода многих звеньев полипептидной цепи в не- [c.113]

    В первые на поли-у-бензил-Ь-глутамате было показано, что переход спираль — клубок можно проследить достаточно эффективно, пользуясь методом измерения оптического вращения [80]. Этот конформационный переход обычно совершается в присутствии добавок, которые способствуют ослаблению водородных связей, стабилизирующих спиральную структуру. Например, в смешанных растворителях, состоящих из дихлорэтана (растворитель, способствующий образованию спирали) и дихлоруксусной кислоты (способствующей образованию конформации клубка), этот полипептид претерпевает обратимый переход первого рода при содержании кислоты в смеси приблизительно 76 об. % (или 80 вес. о) (рис. 58). Такой резкий переход наблюдали также и в случае других пар растворителей он может даже происходить при добавлении небольших количеств нерастворителя, например воды, к раствору полипептида в хорошем растворителе задолго до осаждения полипептида (Доти и Янг, неопубликованные данные). Конформационный переход можно осуществить, не изменяя состав растворителя, просто понижением или повышением температуры раствора, состав которого близок к составу, при котором наблюдается переход в нормальных условиях. Более ярко конформационный переход показан на рис. 59, на котором приведены дисперсионные кривые, нормальная для конформации клубка и аномальная для спиральной формы. (Направление перехода в этом случае противоположно направлению аналогичного перехода при денатурации белков в последнем случае повышение температуры способствует возникновению разупорядоченной формы. Причину этого обращения направления конформационного перехода можно объяснить исходя из данных по термодинамике [80].) Поскольку а-спирали стабилизованы кооперативным влиянием водородных связей, можно ожидать, что резкость перехода должна зависеть от молекулярного веса и распределения по молекулярным весам полипептида, что в действительности было обнаружено для поли-у-бензил-Ь-глутаматов [80]. Кроме того, было показано, что включение в Ь-полипептид небольшого количества В-остатрюв приводит к ослаблению спиральной конформации, в результате чего при увеличении количества О-остатков до [0/(Ь + О) С 0,5] точка перехода сдвигается в направлении меньшей объемной доли дихлоруксусной кислоты [81]. [c.113]


Смотреть страницы где упоминается термин Кооперативность перехода спираль—клубок в полипептидах: [c.13]    [c.26]    [c.182]   
Биофизическая химия Т.3 (1985) -- [ c.185 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Кооперативное

Полипептиды



© 2025 chem21.info Реклама на сайте