Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосистема переноса электронов

    Пластохинон выполняет в системе переноса электронов несколько специфических функций (рис. 10.13). Его значительно больше, чем других компонентов цепи, и он служит электронным буфером , который обеспечивает гладкое функционирование цепи даже при сильных колебаниях в распределении квантов света между двумя фотосистемами. Он способен также связывать между собой несколько электронтранспортных цепей и таким образом повышать надежность системы. Например, если какой-либо реакционный центр II не функционирует, то пластохинон может обеспечить работу связанного с ним реакционного центра I за счет электронов, поступающих из другого реакционного центра II. В результате реакционный центр I не будет испытывать недостатка в электронах. Другая возможная роль пластохинона упоминалась ранее (разд. 10.4.1), когда рассматривалось распределение фотосистем в тилакоидах. Из-за пространственного разделения разных фотосистем необходим механизм, обеспечивающий поток электронов между ними, и предполагают, что в этом механизме главную роль играет пластохинон. [c.346]


    СЫ(П) - фотосистема II. Стрелками указано направление переноса электронов [c.365]

    Перенос электронов между фотосистемами I и II в сопрягающей мембране тилакоидов осуществляется с участием  [c.560]

    Напомним (разд. 17.13), что фосфорилирование ADP до АТР в митохондриях происходит за счет свободной энергии, высвобождающейся, когда богатые энергией электроны движутся по цепи переноса электронов вниз от субстрата к кислороду. Точно так же сопряжено с переносом электронов и фотофосфорилирование ADP до АТР в этом случае энергия высвобождается, когда богатые энергией электроны движутся по фотосинтетической цепи переноса электронов вниз от возбужденной фотосистемы II к дыркам фотосистемы I. [c.698]

    Подобно внутренней митохондриальной мембране (рис. 17-2), тилакоидная мембрана асимметрична по своему молекулярному строению (рис. 23-15). Молекулы переносчиков в цепи переноса электронов, ведущей от фотосистемы II к фотосистеме I, ориентированы в тилакоидной мембране таким образом, что перенос электронов создает реаль- [c.699]

    Диурон блокирует процесс переноса электронов от фотосистемы II к первому участку, соответствующему реакции образования АТР. [c.725]

    Циклический перенос электронов. Индуцируемый светом перенос электронов в хлоропластах, который начинается и завершается на фотосистеме I. [c.1022]

    Одним из наименее изученных участков фотосинтеза является механизм образования кислорода, сопряженный с переносом электронов от ионов гидроксила к хлорофиллу во второй фотосистеме. [c.173]

    Был найден мощный гербицид, дихлорофенилдиметилмочевина, блокирующий перенос электронов между этими двумя фотосистемами. В присутствии указанного соединения электроны могут поступать в фотосистему I от таких искусственных доноров, как аскорбиновая кислота или индофенольный краситель. [c.37]

    Вспомним теперь материал гл. 11, где говорилось, что в цикле Кальвина для превращения СОг в сахар необходимы как NADPH, так и АТР. Насколько нам известно, стехиометрия реакции определяется урав-лением (11-16). Помимо двух молекул NADPH, требуемых для восстановления одной молекулы СОг, нужны еще три молекулы АТР. Уместно спросить, откуда же они берутся. Z-схема дает на это простой ответ. Падение потенциала в цепи переноса электронов, соединяющей верхний конец фотосистемы II с нижним концом фотосистемы I, вполне достаточно для синтеза АТР в результате переноса электронов. По всей вероятности, на каждую пару электронов, проходящих по этой цепи переносчиков, синтезируется только одна молекула АТР. Поскольку, согласно стехиометрии уравнения (11-16), на каждую молекулу NADPH приходится Р/г молекулы АТР, должен существовать еще ка-кой-то механизм синтеза АТР. Кроме того, в хлоропластах, несомненно, протекает и множество других АТР-зависимых процессов, так что реальные потребности в АТР, генерируемом в ходе фотосинтеза, могут быть значительно выше. [c.39]


    Как показали Арнон и др. [79f], дополнительное количество АТР может синтезироваться в хлоропластах в результате циклического фо-тофосфорилирования электроны, находящиеся на вершине фотосистемы I, возвращаются в цикл, замыкаемый указанной на рис. 13-18 штриховой стрелкой. Для синтеза АТР используется система переноса электронов, которая либо связана с цепью переноса Z-схемы, либо является независимой. Фактически Арнон и др. считали, что в хлоропластах имеются три фотосистемы фотосистема I участвует в циклическом фотофосфорилированип, а фотосистема II состоит из двух частей, являющихся компонентами Z-схемы [80]. [c.39]

    Пикосекундные кинетические исследования [94] обесцвечивания бактериохлорофилла, содержащегося в изолированных реакционных центрах, показали, что начальное фотохимическое окисление хлорофилла в форму Хл+ происходит в течение 10 ° с (0,1 не). В соответствии с этим время жизни т возбужденного состояния хлорофилла в фотосистеме I хлоропластов оценивается в 0,13 не (сравните с временем жизи То для свободного хлорофилла, равным 19 не) [95]. Низкое значение т в случае хлоропластов обусловлено быстрым переносом электрона с хлорофилла на акцептор. Время жизни возбужденного состояния хлорофилла в фотосистеме II примерно в 10 раз больше (1,5 нс) > [95]. [c.47]

    Еще одним моментом, связанным с переносом электронов на этом конце цепи, является возможное наличие особого участка, где запасается энергия, необходимая для синтеза АТР [113]. В этом случае процесс должен включать большее число стадий, чем указано на схеме (13-30), что делает его еЩе ближе к цитохромоксидазной системе, работающей в обратном направлении. Хотя в целом природа процессов, протекающих на завершающей стадии образования О2, еще далеко не ясна, исследования ц этом направлении в какой-то степени облегчаются в связи с открытием специфических Ингибиторов. Так, гидроксила мин, по-видимому, блокирует окисление Н2О, не влияя на перенос электронов от искусственных доноров через фотосистемы II и I. [c.51]

    В фотосинтезе Ф. осуществляет перенос электрона от фотосистемы I к никотинамидаденивдифосфату, он участвует также в восстановлении сульфита, нитрита, ненасыщенных жирных к-т, поддержании активности фруктозо-1,6-дифосфа-тазы, пируватдекарбоксилазы и др. Ф. активен в ряде р-ций, в к-рых образуется или используется в качестве восстановителя Н2 партнером Ф. во мн. случаях выступают разл. щдрогеназы. [c.85]

    Фотосистема I может действовать автономно без контакта с системой П. В этом случае циклич. перенос электрона (на схеме показан пунктиром) сопровождается синтезом АТФ, а не НАДФН. Образующиеся в световой стадии кофермент [c.177]

    Реакционный центр П. Пигмент реакционного центра П представляет собой также комплекс хлорофилла с белком, содержащий димер хлорофилла а, известный как хлорофилл ац, или Р-680. Хотя иной характер поглощения света этим пигментом указывает на то, что молекулы хлорофилла а находятся здесь в другом молекулярном окружении или по-иному ориентированы, чем в случае пигмента Р-700, процессы поглощения света и окисления, происходящие в реакционном центре П, сходны с аналогичными процессами в реакционном центре I. Здесь также энергия электронного возбуждения передается с хлорофилла антенны на хлорофилл ац, который подвергается возбуждению с последующим окислением до катион-па хикала и делокализацией неспаренного электрона. В этом случае электрон передается на первичный акцептор электрона фотосистемы И р (Х-320). Затем катион-радикал хлорофилла йц восстанавливается, получая электрон от донора Z. Таким образом, фотосистема П эффективно переносит электроны от 2 на Р (рис. 10.10). [c.341]

    Свет, поглощенный фотосистемой I, поставляет энергию для переноса электронов от донора Y (окислительно-восста-новительный потенциал ч-0,4В) через хлорофилл ai (Р-700) реакционного центра на акцептор X (окислительно-восстановительный потенциал —0,6В), т. е. против градиента потенциала в +1,0 В. Восстановленная форма X затем передает электроны (восстанавливает) на NADP+ (окислительно-восстановительный потенциал —0,32 В) через ферредоксин (белок, содержащий железо и серу) с помощью флавопротеинового фермента. [c.344]

    Общая картина такова, что при переносе электронов от донора на акцептор фотосистемой I образуется сильный восстановитель, который может восстанавливать NADP+ до NADPH, и слабый окислитель, который тем не менее способен получать электроны от пластоцианина. Вместе с тем перенос электронов с донора на акцептор фотосистемой II приводит к образованию сильного окислителя (окисленный донор), который может осуществлять окисление воды и выделение кислорода. Образующийся при этом восстановитель (восстановленный акцептор), хотя и более слабый, чем в фотосистеме I, достаточно силен для передачи электронов через последовательность компонентов пластохинон — цитохром / — пластоцианин. [c.344]

    Фотосистема II. Первичный акцептор Р фотосистемы П, для которого характерны изменения поглощения света при 320 нм, по-видимому, является прочносвязанной формой пластохинона (10.8). Эта форма отличается от основной формы пластохинона — одного из последующих компонентов в цепи переноса электрона. С акцептором Р тесно связан неидентифицированный компонент С-550, имеющий максимум поглощения при 550 нм. Донор 2, который поставляет электроны для восстановления хлорофилла ап (Р-680), также неидентифицирован. Предполагают, что он прочно связан с марганцем или цитохромом 559. [c.345]


    Циклическим электронным транспортом у фотосинтезирующих эубактерий не исчерпываются все возможные пути переноса электронов. Электрон, оторванный от первичного донора реакционного центра, может по цепи, состоящей из других переносчиков, не возвращаться к молекуле хлорофилла, а передаваться на такие клеточные метаболиты, как НАД(Ф)" или окисленный ферредоксин, которые используются в реакциях, требующих восстановителя. Таким образом, электрон, покинувший молекулу хлорофилла, выводится из системы . Возникает однонаправленный незамкнутый электронный поток, получивший название нециклического пути переноса электронов. У пурпурных и зеленых нитчатых бактерий функционирует только циклический светозависимый поток электронов. У остальных групп эубактерий фото-индуцируется как циклический, так и нециклический перенос электронов, при этом у зеленых серобактерий и гелиобактерий оба пути электронного транспорта связаны с функционированием одной фотосистемы, а у цианобактерий и прохлорофит циклический перенос электронов зависит от активности фотосистемы I, а для нециклического потока электронов необходимо функционирование обеих фотосистем. Поток электронов по цепи переносчиков на определенных этапах сопряжен с направленным перемещением протонов через мембрану, что приводит к созданию протонного градиента, используемого для синтеза АТФ. [c.281]

    У цианобактерий и прохлорофит в результате двух фотохимических реакций электроны поднимаются до уровня приблизительно -500 мВ, что делает возможным их прямой перенос на молекулы ферредоксина и НАДФ (рис. 75, В). В группах эубактерий, осуществляющих кислородный фотосинтез, фотоиндуци-руются два потока электронов циклический и нециклический. Циклический перенос электронов, связанный с активностью фотосистемы I, приводит к получению только энергии. При нециклическом электронном транспорте, обеспечиваемом активностью двух последовательно функционирующих фотохимических реакций, на конечном этапе электронного переноса образуется восстановитель, а на отрезке электронтранепортной цепи между двумя фотосистемами, где электроны переносятся по электрохимическому градиенту, имеет место запасание энергии в молекулах АТФ. [c.284]

    Обнаружено, что в фотоокисленном состоянии хлорофилл а реакционного центра фотосистемы И имеет окислительно-восстановительный потенциал порядка +1000...+ 1300 мВ, т.е. настолько положительный, что может быть восстановлен за счет электронов воды. Механизм реакций, связанных с переносом электронов от молекул воды на П зо, неизвестен. Установлено, что [c.287]

    Электрон от акцептора фотосистемы II проходит через цепь переносчиков и поступает в реакционный центр фотосистемы I, на фотоокисленную форму хлорофилла а — пигмент Пуоо ( о=+500 мВ), заполняя электронную вакансию аналогично тому, как это происходит при фотосинтезе зеленых серобактерий. Перенос электронов от акцептора электронов фотосистемы II до реакционного центра фотосистемы I — темновой процесс, состоящий из серии этапов, в которых участвуют переносчики с понижающимися восстановительными потенциалами, такие как цитохромы разного типа, пластоцианин (медьсодержащий белок), пластохинон. Электронный транспорт на этом участке на определенных этапах сопровождается ориентированным поперек мембраны переносом протонов и, следовательно, генерированием Дрн+> разрядка которого с помощью протонной АТФ-синтазы приводит к синтезу АТФ. [c.288]

    Фотосистема I цианобактерий и прохлорофит (как и эубактерий, имеющих только одну фотосистему) фотоиндуцирует также циклический перенос электронов (рис. 75, В), обеспечивающий клетку энергией. В циклическом потоке электроны, акцептированные Ре5-белком, через цепь переносчиков вновь возвращаются к месту своего старта и заполняют электронную вакансию в молекуле П700. Циклический электронный транспорт сопровождается генерированием протонного градиента и синтезом АТФ. [c.289]

    Выше была рассмотрена схема поверхностности фотосистемы в тилакоидной мембране, именно эта система выполняет начальные стадии переноса возбужденных электронов и называется фотосистема I. Эта система отражает уровень возбуждения светом при длине волны в 700 нм, хотя максимальная скорость выделения кислорода достигается только в том случае, когда хлоропласты поглощают свет в более широком диапазоне при более низких длинах волн. Схема взаимодействия фотосистем I и П и перенос электронов от Н2О до НАДФ в этих системах представлен на рис. 8.5. [c.197]

    Этот обходной путь включает несколько переносчиков электронов, которые входят в существующую цепь переноса электронов от фотосистемы II к фотосистеме I, а также участок, осуществляющий процесс фосфорилирования. Затраченная энергия на перемещение одного электрона по этому циклу составляет один квант света. В этом цикле не образуется НАДФ Н и не выделяется О2, но происходит накопление энергии за счет образования при фосфорилировании АТФ. [c.200]

Рис. 23-15. Внутренняя и наружная поверхности тилакоидной мембраны различны. Фотосистемы и цепь переноса электронов ориентированы таким образом, что они накачивают ионы Н+ внутрь тилакоида. АТР-синтетазные головки (Ср1) располагаются на наружной поверхности мембраны. Рис. 23-15. Внутренняя и <a href="/info/93821">наружная поверхности</a> <a href="/info/327472">тилакоидной мембраны</a> различны. Фотосистемы и <a href="/info/511072">цепь переноса электронов</a> ориентированы <a href="/info/461013">таким образом</a>, что они накачивают ионы Н+ внутрь тилакоида. АТР-синтетазные головки (Ср1) располагаются на <a href="/info/93821">наружной поверхности</a> мембраны.
    Нециклический перенос электронов. Индуцированный светом перенос электронов от воды к NADP в ходе фотосинтеза, протекающего с вьщелением кислорода в этом процессе участвуют обе фотосистемы I и II. [c.1014]

    Таким образом, в результате фотореакции донор теряет один электрон-возникает дырка (электронный дефект). Такие дырки должны заполняться электронами, которые могут поступать сюда по одному из двух путей-по пути нециклического или циклического переноса электронов. При нециклическом переносе электроны поступают от экзогенного внешнего донора в случае второй фотореакции-от молекул воды, в случае первой реакции-из электрон-транспортной цепи, связывающей обе фотосистемы между собой. При циклическом переносе электроны возвращаются от восстановленного акцептора (X ) к окисленному донору. Фотохимическая окислитс льно-восстановительная реакция, в ходе которой Р окисляется, а X восстанавливается, представлена на следующей схеме  [c.386]

    Рис 12.14. Фотосинтетический перенос электронов ( Z-схема ). По вертика ли окислительно-восстановительный потенциал). Р700 Хл а, донор электронов фотосистемы I (ФС I) Р680-Хл ац, донор электронов фотосистемы II (ФС II) X 320-акцептор электронов ФС II X-акцептор электронов ФС I, белок, содержащий железо и серу Fd-ферредоксин Цит-цитохром. Фотохимические реакционные центры заключены в красные рамки. (Объяснение в тексте.) [c.387]

    Таким образом, в слоевых системах тилакоидов имеются сложные пигментно-липидно-белковые комплексы с различными рассмотренными выше простетическимн группами только оптимальная пространственная организация этих комплексов делает возможным столь быстрый и эффективный транспорт электронов по цепи переносчиков, который наблюдается в фотосинтезе. Однако та же пространственная организация, вероятно, предопределяет и участие тех или иных компонент в нескольких редокс-системах, и возникновение новых, многокомпонентных редокс-систем, которое стимулируется условиями внешней среды живого организма, в частности действием мутагенов, ингибиторов и других агентов. Например, пластохинон А — первый акцептор электрона от Хл реакционных центров фотосистемы П — является еще и кофактором циклического переноса электрона с участием только системы I. Имеются данные о том, что цитохром / — важное звено в цепи транспорта электрона от фотосистемы И к фотосистеме I — принимает участие и в циклическом транспорте электрона. [c.33]

    Основным принципиальным отличием нециклической электронтранспортной цепи у этих растений считается последовательное участие в переносе электронов двух фотохимических центров или, как принято называть в последнее время, двух фотосистем. Каждая фотосистема включает в себя не только фотохимический реакционный центр, но и совокупность определенных обслуживающих его оксидоредуктаз. Фотосистема 1 имеет тот же реакционный центр Р700, что и система циклического электронного транспорта, а фотосистема 2 включает хлорофилл а, имеющий красный максимум поглощения в более коротковолновой области [c.165]

    Перенос электронов между различными компонентами системы нециклического электронного транспорта совершается с различной скоростью. Наиболее медленной считается окислительно-восстановительная реакция между двумя фотосистемами, то есть между цитохромами Вз и I (10" сек). Перенос электронов от воды к хлорофиллу а реакционного центра фотосистемы 2 (Рб5о) происходит с большей скоростью (10-3 сек). Реакции окисления цитохрома 1 и пластоцианина, а также реакция 2— ферредоксин осуществляются со скоростью сек. Образование первичных восстановителей и имеет скорость 10 сек. [c.168]

    Если принять схему последовательного участия двух фотосистем в фотосинтетическом переносе электронов, то можно прийти к выводу, что квантовый расход восстановления одной молекулы НАДФ (т. е. переноса двух электронов) в реакции Хилла должен быть равен 4. Для переноса каждого электрона требуется поглощение одного кванта в фотосистеме 2 и одного —в фотосистеме 1. В результате этого может освободиться один атом кислорода. Для образования одной молекулы кислорода (Ог) требуется затратить минимум (в идеальном случае) 8 квантов света. [c.169]

    Необходимо заметить, что Д. Арнон — один из авторов гипотезы последовательного переноса электронов через две фотосистемы — в 1965 году отказался от нее и предложил альтернативную гипотезу, по которой окисление воды в процессе нециклического транспорта электронов включает только фотосистему 2, независимо от того, является ли акцептор электронов физиологическим (система ферредоксин-НАДФ) или нефизиологическим (феррицианид). [c.169]

    Перенос электронов по электронтранспортной цепи и фотофосфорилирование тесно связаны с поглощением квантов света и условиями освещения, но с ними больше коррелирует первый процесс. Так, например, при переходе темнота — свет интенсивность переноса электронов в хлоропластах быстро достигает уровня, обусловленного величиной освещенности- В то же время для циклического фотофосфорилирования характерна лаг-фаза (фиг. 89) продолжительностью около 5 минут или даже больше (при подавленной с помощью ДХММ фотосистеме 2). Грант и Уотли (1967) объясняют этот эффект тем, что в темноте происходит окисление компонентов циклического электронного транспорта, а для эффективного образования АТФ система циклического фотофосфорилирования должна быть в определенной [c.194]


Смотреть страницы где упоминается термин Фотосистема переноса электронов: [c.13]    [c.48]    [c.525]    [c.347]    [c.356]    [c.290]    [c.696]    [c.714]    [c.129]    [c.387]    [c.519]    [c.28]    [c.168]    [c.200]   
Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.69 , c.71 ]




ПОИСК







© 2025 chem21.info Реклама на сайте