Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимические реакции с переносом электрона

    Любой метод изучения интермедиатов включает фазы их генерации и детектирования, первая из которых в электрохимии всегда связана с электронным переносом, как правило, осуществляемым посредством электрохимической, реже фотохимической реакции. Перенос электрона с электрода на молекулу (ион) органического вещества приводит к образованию первичного продукта реакции и может инициировать ряд его дальнейших превращений, в ходе которых образуются вторичные продукты различной устойчивости. Способы детектирования возникающих промежуточных продуктов могут быть электроаналитическими, физическими (главным образом спектральными) или химическими и базироваться на различных принципах. При этом в одной группе методов процессы генерации и обнаружения промежуточных продуктов пространственно не разделены, в другой такое разделение существует, и между двумя названными фазами эксперимента находится еще одна — быстрая транспортировка исследуемых частиц от места их образования в зону аналитического определения. [c.197]


    В фотохимическом реакционном сосуде I фотосинтезирующие структуры (хлоропласты) осуществляют фотохимическую реакцию переноса электрона на экзогенный низкомолекулярный переносчик электронов А. При этом из воды выделяется молекулярный кислород. В реакторе II осуществляется каталитический перенос электронов на протоны с образованием молекулярного водорода. Экзогенный электронный переносчик А при этом должен обладать определенными свойствами окислительно-восстановительный потенциал пары восстановитель — переносчик должен быть близок к окислительно-восстановительному потенциалу водородного электрода в реакции получения водорода должен быть использован катализатор, осуществляющий перенос электронов с восстановленного акцептора (АН2) на протоны с образованием молекулярного водорода используемый акцептор А должен быть эффективным субстратом такого катализатора. [c.47]

    Путь электрона от молекулы хлорофилла на первичный акцептор происходит против градиента окислительно-восстановительного потенциала. В реакционных центрах пурпурных бактерий за счет поглощенной энергии света электрон поднимается приблизительно от +500 до —200 мВ, зеленых бактерий — от +250 до —450 мВ. В обоих случаях подъем составляет около 700 мВ. У фотосинтезирующих прокариот, имеющих два типа фотохимических реакционных центров, движение электрона в реакционном центре II фотосистемы происходит от +УОи до порядка —200 мВ, а в I фотосистеме — от -+-500 до —500 мВ. Диапазон перемещения электрона в этом случае превышает или равен 1000 мВ. Эти значения отражают величину энергии, запасенной в процессе фотохимического акта в реакционном центре. Итог фотохимической реакции — перенос электрона за счет энергии поглощенного кванта света против градиента окислительно-восстановительного потенциала и акцептирование его соединением, выполняющим функцию первичного акцептора электронов. Это соединение в восстановленной форме является первым химическим продуктом, в котором аккумулируется энергия поглощенного кванта света. [c.239]

    Важная информация может быть получена в результате исследования формы линии. Так, например, по эффектам диполь — дипольного уширения и обменного сужения можно судить о том, является ли пространственное распределение парамагнитных центров статистически равномерным или они сгруппированы более плотными сгустками в определенных областях образца. Решение этих вопросов, а также оценка среднего расстояния между парамагнитными центрами важны для понимания кинетических особенностей радиационных и фотохимических процессов в твердой фазе, явлений адсорбции. По изменению формы линии может изучаться кинетика быстрых процессов, таких, как спиновый обмен между радикалами, реакции переноса электрона и др. Примером реакций последнего типа может служить реакция переноса электрона от ион-радикала нафталина к молекуле нафталина  [c.250]


    Важные результаты можно получить, руководствуясь представлением об и д -промотировании, а также используя наши результаты по расчету применения констант диссоциации кислот при возбуждении [29] для объяснения фотохимических реакций переноса водорода. До настоящего времени нет полной ясности в механизме этих важных реакций. Сейчас можно сделать только следующее предположение при возбуждении молекулы, которая имеет и-электроны и принимает атом водорода, переносится сразу атом водорода [И], при возбуждении молекулы донора протонов предпочтительным является перенос протона на первой стадии. [c.7]

    Фотохимические реакции комплексов обычно зависят от способности иона металла поглощать свет. Сюда относятся многочисленные реакции переноса электрона [66, 67], например  [c.439]

    Из трех классов реакций — термическое разложение, фотохимическое разложение и реакции переноса электронов, — приводящих к образованию свободных радикалов, первые имеют наибольшее значение. [c.366]

    Свободные радикалы в растворе. Свободные радикалы в растворе получаются при помощи методов, аналогичных применяемым при их образовании в газовой фазе (термическим и фотохимическим разложением, переносом электронов). Наиболее подходящими растворителями для этих реакций являются неполярные растворители. Некоторые реакции свободных радикалов в растворе сходны с реакциями радикалов [c.368]

    При безызлучательном процессе энергия электронов возбужденной молекулы может быть непосредственно передана другим молекулам (например, в результате триплет-триплетного переноса). Вместе с тем, при безызлучательном переходе возникает избыток колебательной энергии, который быстро переходит в тепло. Химику важно знать, что конечные продукты фотохимической реакции могут образовываться как в возбужденных электронных состояниях 5 или Т, так и при их дезактивации в горячее основное электронное состояние 5ц, у которого возбуждены высокие колебательные уровни. В фотохимическом процессе могут возникать также нестабильные радикалы, биполярные [c.278]

    Независимо от мультиплетности возбужденного состояния, первичные фотохимические процессы могут носить самый различный характер диссоциация на радикалы, внутримолекулярный распад на молекулы, внутримолекулярные перегруппировки, фотоизомеризация, фотоприсоединение, фотодимер изация, фотоионизация, внутренний или внешний перенос электрона с образованием ионов, наконец, с молекулами других веществ возбуждения молекула может осуществлять фотосенсибилизированные реакции передачей своей энергии акцептору. [c.283]

    Для фотохимических реакций циклизации правила обратны, поскольку в этих случаях, прежде чем произойдет взаимодействие, электрон переносится на вакантную орбиталь и тогда [24-2]-реакция оказывается разрешенной  [c.246]

    Аналогичные результаты были получены в реакциях фотопереноса электрона для пигментов (хлорофиллы, феофитин и др.) в присутствии акцепторов (хиноны, метилвиологен, нитросоединения) и доноров (аскорбиновая кислота, фенилгидразин, гидрохинон, Fe +) электрона. Образование ион-радикалов красителей при фотохимических окислительно-восстановительных реакциях протекает через ряд промежуточных стадий, включающих образование возбужденного комплекса донорно-акцепторного типа и ион-ра-дикальных пар. Донорно-акцепторный комплекс с триплетным состоянием красителя был обнаружен в реакции фотоокисления хлорофилла я-бензохиноном в толуоле. Вероятность дезактивации эксиплекса в направлении образования ион-радикальной пары зависит от степени переноса заряда внутри возбужденного комплекса. В свою очередь степень переноса заряда определяется сродством к электрону и потенциалом ионизации как триплетной молекулы красителя, так и невозбужденной молекулы донора или акцептора электрона. [c.178]

    Химия возбужденных частиц может значительно отличаться от химии частиц, находящихся в основном состоянии. Как мы уже указывали в гл. 1, эти различия могут происходить как в результате избытка энергии, присущего возбужденным частицам, так и за счет частичной перестройки их электронных оболочек. Оба этих фактора отчетливо проявляются в процессах внутри- и межмолекулярного переноса энергии, которые обсуждались в последних двух главах. Очевидной предпосылкой для переноса энергии является ее избыток, а ограничения, накладываемые на состояния, между которыми происходит перенос энергии, зависят от строения электронных оболочек молекул в различных состояниях. В настоящей главе мы рассмотрим процессы, включающие возбужденные частицы, которые приводят к химической реакции (т. е. в которой реагенты и продукты различаются не по возбужденным состояниям, а по химической природе). Эти химические процессы могут быть как внутри-, так и межмолекулярными, подобно физическим процессам переноса энергии. Первый класс реакций включает внутримолекулярное восстановление, присоединение и различные типы изомеризации к межмолекулярным реакциям возбужденных частиц относятся реакции присоединения невозбужденных молекул абсорбированного вещества или (в случае растворов) растворителя. Фотохимические реакции могут быть наилучшим способом синтеза множества важных, интересных или полезных соединений некоторые примеры приведены в разд. 8.10. Мы опишем здесь ряд принципов, лежащих в основе реакционной способности возбужденных частиц, и представим небольшую подборку реакций, иллюстрирующих наиболее важные типы известных процессов. [c.148]


    К фотохимическим реакциям, протекающим по механизму переноса электрона, относятся реакции фотовосстановления, фотоокисления, фотозамещения и др. [c.230]

    Фотохимические реакции с переносом электрона [c.310]

    Реакции окисления, в которых атмосферный кислород реагирует с горючими газами и парами, настолько хорошо известны и часто протекают так быстро, что, естественно, возникает тенденция рассматривать молекулу кислорода как весьма реакционноспособную. В действительности она химически весьма инертна по отношению к другим молекулам, а быстрота процессов горения обусловлена реакцией кислорода со свободными радикалами в стадии роста цепных реакций [1]. Цепные реакции протекают также и при медленном окислении насыщенных, ненасыщенных углеводородов, их производных и некоторых неорганических веществ как в растворах, так и в чистых жидкостях. Цепной характер этих автоокисли-тельных реакций был впервые установлен Бэкстрёмом путем сравнения фотохимического и термического окисления альдегидов и сульфита натрия (см. стр. 359). Подобно всем цепным реакциям, скорости этих реакций можно увеличить, добавляя катализаторы, дающие соответствующие свободные радикалы при термическом или фотохимическом разложении или за счет реакции переноса электрона их скорости можно уменьшить введением ингибиторов, которые заменяют активные радикалы неактивными или молекулами. Некатализируемые реакции автоокисления обычно идут медленно, потому что медленной является начальная стадия взаимодействия между реагентами, приводящая к образованию свободных радикалов. Однако при некоторых обстоятельствах реакции автоокисления обнаруживают самоускорение или автокатализ, обусловленный бирадикальными свойствами молекулы или атома кислорода. Поэтому представляет интерес рассмотреть некоторые общие особенности реакций автоокисления в связи с реакционно-способностью молекулы кислорода. [c.444]

    Основные научные работы посвящены исследованию сверхбыстрых химических реакций импульсными методами. Совместно с Р. Дж. Р. Норришем соацал (1950) первую установку импульсного фотолиза. Ими впервые были получены спектры поглощения многих простых свободных радикалов, изучен механизм их превращений, показано существование быстрых рекомбинационных процессов. Им удалось зарегистрировать спектральную картину развития реакции хлора с кислородом, инициируемую световым импульсом. Исследовал быстрые реакции в кондеч-сированной фазе. Предложил метод определения абсолютного квантового выхода триплетных состояний. Разработанные им приемы изучения деградации энергии триплетных молекул позволили представить детальную картину быстрых процессов, следующих за фотовозбуждением. Установил основные кинетические закономерности реакций переноса электрона и атома водорода. Определил константы кислотно-основного равновесия для синглетных и триплег-ных состояний ароматических молекул нашел связь между константами скорости реакций и природой возбужденного состояния. Исследовал механизм первичных фотохимических реакций на модельных системах фотосинтеза. Одним из первых создал установки импульсного лазерного фотолиза. [c.404]

    Прямой сенсибилизированный фотолиз воды требует энергии 2,46 эВ на одну молекулу [501]. Но если эту реакцию осуществлять как последовательность реакций переноса электронов с использованием катализатора для выделения Нг и Ог, то необходимая энергия снижается до 1,23 эВ, так как в этом случае для ее реализации может быть использован перенос двух электронов, что потребует двух квантов света. В этом случае энергетический порог может быть преодолен светом с длиной волны меньше 10,03-10 м. Солнечный свет в такой ступенчатой схеме используется в серии фотоката-литических процессов. Это позволяет применять ряд фотокаталитических реакций, каждая из которых имеет более низкий энергетический барьер, чем прямой фотолиз воды. Благодаря этому можно для фотохимического разложения воды использовать не только ультрафиолетовое излучение, но и видимое излучение Солнца. [c.336]

    В настоящее время ХПЯ обнаружена в самых разных классах реакций распад перекисей и азосоединений, термические перегруппировки и изомеризации молекул, фотохимические реакции распада, фотосенсибилизированные реакции, реакции с участием металлоорганических соединений ртути, магния, кремния, лития, свинца, олова и т. д., реакции переноса электрона, азосочетания, окисления, полимеризации, цепного галоидирования и т. д. [25]. ХПЯ дает важную информацию о механизмах, вскрывает их новые стороны. К новым результатам, полученным методом ХПЯ, относится обнаружение радикальных реакций синглетных карбепов и ориентации нуклеофильного типа в реакциях ароматического присоединения радикалов, установления ряда стабильности ацилоксиради-калов при распаде ацильных перекисей, доказательство роли диа-зофенильного радикала в ряде реакций термического распада и переноса электрона, обнаружение фотохимического распада кетонов в эксиплексах, установление радикального механизма для ряда реакций, считавшихся классическими примерами нуклеофильного или электрофильного замещения, и т. д. [c.223]

    Процессы переноса электронов в только что описанных фотохимических реакциях интенсивно изучались с помощью методов скоростной спектроскопии, особенно в фотосистеме пурпурных бактерий, более простой, чем эволюционно близкая к ней фотосистема хлоропластов. Реакционные центры бактерий можно солюбилизировать и выделрггь в активной форме с помощью детергента. Это крупные белково-пигментные комплексы, и в 1985 г. методом рентгеноструктурного анализа удалось определить их полную трехмерную структуру (см. рис. 6-72 и 7-49). Эта структура в сочетании с данными кинетики дает наилучшее представление о реакциях переноса электронов, лежащих в основе фотосинтеза. [c.469]

    По проведенным измерениям, для восстановления 1 молекулы СО2 у фототрофов, имеющих две фотосистемы, необходима энергия 8— 10 квантов поглощенного света. Эта величина складывается из следующих значений. В соответствии с приведенной схемой фотосинтеза, в основе которой лежит последовательность из двух фотохимических реакций, перенос одного электрона от воды на НАДФ+ требует 2 квантов света. Восстановление молекулы НАДФ+ происходит с использованием 2 электронов, т. е. 4 квантов света. Для ассимиляции 1 молекулы СО2 в цикле Кальвина необходимы 2 молекулы НАДФ-Нг, т. е. [c.246]

    При фотохимическом возбуждении новые энергетические уро1 ни могут различаться спинами электронов. Состояния с пара лельными спинами (триплеты) имеют более низкую энергию, че состояния с антипараллельными спинами (синглеты). При возбу дении молекулы атомом сенсибилизатора выполняется правил Вигнера, по которому перенос энергии между возбужденной част цей и молекулой в основном состоянии разрешен только при сохр нении полного спина системы. Работы Лейдлера показали, чт правило сохранения спина позволяет объяснить характер ряд фотохимических реакций углеводородов. Основное состояние ол( фина с заполненной я-орбиталью (спины антипараллельны) — си1 глет возбуждение в триплетное состояние представляет собой з прещенный переход. Не следует понимать это как отсутствие во бужденных триплетных состояний, но такие молекулы будут обр зовываться при безизлучательной потере энергии возбужденным синглетными молекулами. [c.66]

    Химическая поляризация ядер наблюдается в продуктах термического и фотохимического распада перекисей и азосоединений, в продуктах реакций изомеризации и перегруппировки, при фотолизе карбонильных соединений, в продуктах реакций металлоргани-ческих соединений, в реакциях окисления, переноса электрона и т. д. [c.297]

    Предположим теперь, что реакция димеризации осуществляется в условиях фотохимического возбуждения системы реа ирующих молекул этилена УФ-светом. Большинство фотохимических реакций протекает через низшее возбужденное электронное состояние, соотвегствующее переносу одного электрона на низший свободный уровень. Как видно из рис. 13.4, в этом случае имеется полное соответствие по свойствам симметрии всех заполненн)о1Х электронами орбиталей реагентов и продукта в первом возбужценном электронном состоянии и не происходит пересечения уровней заполненных и валентных МО реагентов и продуктов. Реакция относится к разрешенным по симметрии в электронно-возбужденном состоянии. Для ее реализации необходимо облучение светом с длиной волны, соответствующей энергии л- л -электронного перехода в этилене. [c.498]

    Непосредственное исследование триплетных молекул и их участие в фотохимических процессах стало возможно с появлением метода импульсного фотолиза. Поскольку газы и жидкости, как правило, не фосфоресцируют, что, по мнению Льюиса и Каша, связано с малым временем жизни триплетных молекул, то наблюдение за триплетными молекулами возможно только импульсными методами. В качестве примеров химических реакций, протекающих в триплетном состоянии, следует указать на перенос протона, перенос электрона, отрыв атома водорода и др. Кислотно-основные свойства триплетного состояния органических молекул характеризуются сродством к протону этих молекул. Константа основности триплетных молекул (или р/С) может быть определена по кривой титрования , причем индикатором является молекула в своем триплетном состоянии. Типичная кривая зависимости концентрации триплетных молекул от pH среды приведена на рис. 57 для 9-азафенантрена. Основность ароматических соединений в триплетном состоянии не сильно отличается от основности молекул в основном состоянии в противоположность молекулам, находящимся в синглетно-возбужденном состоянии, основность которых существенно отличается от основного состояния. В табл. 15 приведены значения р/С для основного (5о), первого синглетно-возбужденного (5 ) и триплетного (Г]) состояний ряда ароматических молекул. Величины р/С (Т) определены при помощи метода импульсного фотолиза. [c.159]

    За последние десятилетия благодаря успехам спектроскопии, квантовой химии и хим. кинетики стало возможным исследовать структуру и св-ва возбужд. состояний молекул и изучать фотохимические реакции с примен. теории элементарного хим. акта. Возбужд. молекулы рассматривают не просто как горячую модификацию осн. состояния тех же молекул, а как иные молекулы, для к-рых характерны свои хим. св-ва и электронное строение, изучаемые т. н. молекулярной Ф. Развитие представлений о механизме фотохим. р-ций способствовало пониманию роли фотофиз. процессов — внутр. и интеркомбинац. конверсии (беэызлу-чательные переходы молекул в иные электронные состояния той же или иной мультиплетности соотв.), безызлучатель-ного переноса энергии. Наиб, важные методы исследования фотохим. р-ций — люминесцентные (см. Люминесценция), импульсный фотолиз. [c.634]

    Фотохимические реакции карбениевых ионов [50] разделяются на две категории I) валентные изомеризации и 2) процессы переноса электрона. Примером валентной изомеризации является превращение пентаметилциклогексадиенил-катиона в соответствующий бицикло [3.1.0] гексенил-катион [схема (19)]. Такое превращение представляет собой фотохимически разрешенную согласованную дисротаторную электроциклическую циклизацию пентади-енильной части исходного карбокатиона. Обратная реакция протекает, однако, в удивительно мягких условиях для такого термически запрещенного дисротаторного раскрытия для объяснения этого факта был предложен постадийный механизм. [c.544]


Смотреть страницы где упоминается термин Фотохимические реакции с переносом электрона: [c.97]    [c.49]    [c.64]    [c.273]    [c.94]    [c.36]    [c.69]    [c.469]    [c.160]    [c.178]    [c.160]    [c.164]    [c.229]    [c.418]    [c.633]    [c.172]    [c.173]    [c.134]   
Смотреть главы в:

Химическая кинетика -> Фотохимические реакции с переносом электрона




ПОИСК





Смотрите так же термины и статьи:

Реакции переноса электрона

Фотохимическая реакция



© 2024 chem21.info Реклама на сайте