Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установки паровой каталитической конверсии углеводородов

    Установка для производства водорода методом паровой каталитической конверсии легких углеводородов [c.62]

Рис. 77. Капитальные вложения в технологическое оборудование установки производства водорода методом паровой каталитической конверсии углеводородов Рис. 77. <a href="/info/152077">Капитальные вложения</a> в технологическое <a href="/info/1471250">оборудование установки производства водорода</a> методом <a href="/info/1471237">паровой каталитической конверсии</a> углеводородов

    Назначение установки — производство водорода, потребность в котором возрастает из года в год в связи с постоянным углублением процессов переработки нефти, повышением требований к качеству получаемых топлив и смазочных материалов, а также в связи с необходимостью обессеривания энергетического топлива. В качестве сырья для получения водорода методом паровой каталитической конверсии легких углеводородов могут быть использованы природные и заводские (сухие и жирные) газы, а также прямогонные бензины. Этот наиболее распространенный метод производства водорода включает три стадии подготовку сырья к конверсии, собственно конверсию и удаление из продуктов оксидов углерода [5  [c.62]

    Установки паровой каталитической конверсии углеводородов [c.181]

    Смесь сухих газов каталитического риформинга бензина, гидроочистки дизельного топлива, гидрокрекинга и отдувочного газа гидрокрекинга является вполне удовлетворительным сырьем для производства водорода методом паровой каталитической конверсии углеводородов. На крупных установках производства водорода эти газы собирают и предварительно очищают от сероводорода. [c.35]

    Спецификой работы установки, требующей строжайшего соблюдения правил безопасности и правил эксплуатации аппаратов, работающих под давлением, является применение взрывоопасных и токсичных веществ. Установка паровой каталитической конверсии углеводородов для производства водорода часто является составной частью установки гидрокрекинга ее строительство обходится примерно в 25—30 % стоимости установки гидрокрекинга. [c.63]

    Рие. 40. Схема установки для производства водорода паровой каталитической конверсией углеводородов при давлении 2,0—2,5 МПа  [c.129]

    При углубленной или глубокой переработке сернистых и особенно высокосернистых нефтей того количества водорода, которое производят на установках каталитического риформинга, обычно не хватает для обеспечения потребности в нем гидрогенизационных процессов НПЗ. Естественно, требуемый баланс по водороду может быть обеспечен лишь при включении в состав таких НПЗ специальных процессов по производству дополнительного водорода. Среди альтернативных методов (физических, электрохимических и химических) паровая каталитическая конверсия (ПКК) углеводородов является в настоящее время в мировой нефтепереработке и нефтехимии наиболее распространен- [c.263]

    Установка паровой каталитической конверсии углеводородов для производства водорода часто является составным элементом установки гидрокрекинга. Ее строительство обходится примерно в 25—30% от стоимости оборудования и сооружения установки гидрокрекинга. Капитальные вложения в сооружение такой установки в зависимости от мощ,ности, по данным [1], показаны на [c.196]


    Технический водород, получаемый как побочный продукт каталитического риформинга бензина, содержит от 70 до 92% Н,- Водород же специального производства может содержать от 90 до 99,99% На в зависимости от способа его получения. Технический водород, получаемый методом паровой каталитической конверсии углеводородов, содержит 95—96% Нз, а методом паро-кислородной газификации 97—98% Нз. Чем выше концентрация Н3 в техническом водороде, тем значительнее затраты на его производство. Оптимальная концентрация Н3 определяется на установках, производящих и использующих водород, исходя из расходных коэффициентов. [c.20]

    При углубленной или глубокой переработке сернистых и особенно высокосернистых нефтей того количества водорода, которое производят на установках каталитического риформинга, обычно не хватает для обеспечения потребности в нем гидрогенизационных процессов НПЗ. Естественно, требуемый баланс по водороду может быть обеспечен лишь при включении в состав таких НПЗ специальных процессов по производству дополнительного водорода. Среди альтернативных методов (физических, электрохимических и химических) паровая каталитическая конверсия (ПКК) углеводородов является в настоящее время в мировой нефтепереработке и нефтехимии наиболее распространенным промышленным процессом получения водорода. В качестве сырья в процессах ПКК преимущественно используются природные и заводские газы, а также прямогонные бензины. [c.719]

    Режим паровой каталитической конверсии углеводородов должен обеспечить получение технического водорода с содержанием 95— 98% Hj. Получение водорода меньшей концентрации нецелесообразно, так как приводит к повышенному его расходу на установке гидрокрекинга (см. гл. I, стр. 21). Производство же водорода большей концентрации требует значительных дополнительных затрат и экономически мало оправдано. Технический водород с концентрацией = 95% Hj можно получать нри содержании в сухом конвертированном газе 2—2,5% СН 4, так как в последующих процессах очистки от СО 2 после конверсии окиси углерода и метанирования содержание метана в газе возрастет до 4—5%. Степень конверсии метана при этом составляет 0,9. Технический водород с содержанием 98% Hj получают при содержании в конвертированном газе 1 — [c.72]

    Для обеспечения длительной непрерывной эксплуатации установок существенное значение имеют загрузка и восстановление катализаторов, вывод установки на режим, меры по ликвидации отклонений от рабочего режима, обеспечение безопасных условий ведения процесса. В настоящей главе излагаются специфические особенности эксплуатации установок для производства водорода методом паровой каталитической конверсии углеводородов и более кратко методом паро-кислородной газификации нефтяных остатков.. [c.181]

    Дмитриенко В. И., Мищенко Н. Т., Веселов В. В. Малогабаритная передвижная установка для паровой конверсии бензина//Каталитическая конверсия углеводородов. Киев Наукова думка. 1979. Вып. 4. С. 73—77. [c.185]

    В настоящее время промышленный водород получают главным образом из отходящих (и попутных) газов, из коксового газа, газов каталитического риформинга и продуктов газификации твердых и жидких топлив (в частности, из водяного и паровоздушного газов) и путем конверсии углеводородов водяным паром и их неполным окислением. Используется и электролиз воды. Железо-паровой способ применяется в малогабаритных установках он почти утратил свое былое значение.— Прим. ред. [c.188]

    Основным сырьем для процесса полимеризации являются пропан-пропиленовая, бутан-бутиленовая и этан-этиленовая -фракции, образующиеся при нефтепереработке. В производстве кумола или этилбензола в качестве дополнительного сырья применяют также бензол. Олефиновое сырье получают на установках термического и каталитического крекинга, термического ри-форминга и паровой конверсии углеводородов. [c.234]

    Схема двухстадийной паровой каталитической конверсии углеводородов. Замечено, что в начальном участке реактора паровой каталитической конверсии углеводородов протекает паровая конверсия гомологов метана в метан. В отличие от паровой конверсии метана конверсия его гомологов может быть осуществлена в авто-термичпых условиях, без подвода тепла извне. При использовании в качестве сырья бензина или нефтезаводских газов с углеродным эквивалентом выше 1, на некоторых установках для производства водорвда вводится дополнительно автотермичный реактор [1]. Содержание гомологов метана в газе после такого реактора незначительно. [c.134]

    Назначение установки — производство водорода, потребность в котором возрастает из года в год в связи с постоянным углублением процессов переработки нефти, повышением требований к качеству получаемых топлив и смазочных материалов, а также в связи с необходимостью обессеривания энергетического топлива. В качестве сырья для получения водорода методом паровой каталитической конверсии легких углеводородов могут быть использованы природные и заводские (сухие и жирные) газы, а также прямогонные бензины. Этот наиболее распространенный метод производства водорода включает три стадии подготовку сырья к конверсии, собственно конверсию и удаление из продуктов оксидов углерода [5]. Применяемая в настоящее время технология per ламентирует некоторые требования к качеству сырья, в частности по содержанию в нем соединений серы (в газах до 100 мг/м , в бензинах до 0,3 мг/кг), отравляющих как никелевый катализатор паровой конверсии углеводородов, так и цин-кмедный катализатор низкотемпературной конверсии оксида углерода. Присутствие в сырье непредельных углеводородов вызывает образование углеродистых отложений на катализаторе паровой конверсии углеводородов. [c.99]


    Адсорбционное разделение или адсорбционное концентрирование, с помощью цеолитов в циклически работающих адсорберах применяют на установках средней производительности. Этот процесс используется для концентрирования водорода из газов каталитического риформинга, для очистки водорода, получаемого на этиленовых установках, а также на установках каталитической паровой конверсии углеводородов. [c.253]

    Сухие газы, содержащие непредельные углеводороды, получаются в процессах термического и каталитического крекинга и при коксовании. Смесь этих газов очищается от сероводорода и используется в качестве топлива на НПЗ. Состав топливного газа зависит от схемы переработки нефти на данном заводе, а также от того, эксплуатируется в данный момент та или иная установка. Расход газа в качестве топлива для печей паровой конверсии составляет 70 —90% от расхода сырьевого газа. Постоянство плотности и те- [c.36]

    Современные водородные установки паровой каталитической конверсии углеводородов работают под давлением 2,0 ЫПа. В трубчатых печах конверсии головной процесс получения водорода осуцествляет-ся при давлениях 2,5-2,О ЫПа и температурах I093-IIQ3 К. [c.63]

    Технический водород может содержать и кислород, который поступает из водяного пара, используемого в процессе, или из промывной воды. В водороде, полученном современными методами паровой каталитической конверсии углеводородов под давлениём или паро-кислородной газификацией мазута под давлением, кислорода ничтожно мало. В водороде, полученном на типовых установках паровой конверсии углеводородов при низком давлении, может быть до 0,3—0,4% Оз. В процессах гидроочистки и гидрокрекинга нефтепродуктов, а также в большинстве гидрогенизационных нефтехимических процессах кислород не влияет на протекание реакции или гидрируется водородом с образованием воды. Для таких процессов содержание Оз в водороде должно быть не более 0,2—0,3%. В некоторых нефтехимических процессах в техническом водороде содержание кислорода ограничивают тысячными долями процента. Кроме перечисленных примесей, в техническом водороде могут присутствовать такие микропримеси, как окислы азота, цианистый водород, а также сероводород, аммиак и твердые частицы. Содержание микропримесей незначительно, их влияние на гидрогенизационные процессы не изучено и пока не учитывается. [c.23]

    Как видно из таблицы, удельные канитальные вложения в установку для выделения водорода методом глубокого охлаждения в несколько раз ниже, чем при производстве На паровой каталитической конверсией углеводородов. Основной статьей затрат здесь является. [c.203]

    Приводятся данные по технологии и качеству водорода, получаемого с установок каталитической конверсией углеводородного газа с водяным паром. Готовый водород, получаемый на установках паровой каталитической кЬнверсии углеводородов, можно практически пол-носты) очистить от окислов углерода, про стив его над медным катализатором при температуре ЗОООС. [c.184]

    В процессах выделения водорода из водородсодержащих газов методом глубокого разделения капитальные вложения в несколько раз ниже, чем в его производствах паровой каталитической конверсией углеводородов. По данным фирмы Linde [873], цена 1 т 95/98 %-го водорода, получаемого из нефтезаводских газов с содержанием 30 и 60 % Нг, колеблется в зависимости от производительности установки по исходному газу от 283 до 1420 тыс. м /сут в пределах от 106 до 36 долл/т Hj при 30 %-ном содержании водорода в исходном газе и от 53 до 18 долл/т Нг при 60 %-ном. [c.575]

    Совершенствование энерготехнологических схем производства аммиака и водорода, укрупнение единичной мощности агрегатов требуют разработки и применения более совершенных реакционных аппаратов и машин. Такие схемы производства с паро-газовым циклом должны включать, кроме центробежных компрессоров и быстроходных паровых гурбин, мощные газотурбинные установки, которые могли бы работать непрерывно в течение года. Для большей экономичности давление рабочего тела (дымовых или технологических газов) в них должно составлять 30—40 ат, а температура — около 900° С. Для сверхмощных агрегатов конструкции практически всех аппаратов должны быть изменены. Простое количественное увеличение размеров приводит к таким габаритам и весу аппаратов, которые становятся препятствием при транспортировании их по железным и шоссейным дорогам. Сварка же корпусов аппаратов на монтажных площадках, как известно, резко увеличивает себестоимость аппаратов и снижает надежность их работы. Поэтому нахождение новых и часто принципиальных инженерных решений аппаратурного оформления процессов, в частности каталитической конверсии углеводородов, становится остро актуальной задачей. [c.4]

    Процесс газификации - не каталитический пламенный, протекает Б пустотелом реакторе цилиндрической формы при 1550-1750 К под давлением от 0,2 до 10 1Ша и выше. Получаемый в реакторе газ содержит 45- 7% СО и 45-47 8 Н2, остальное-С021 азот и метан. Удельный расход сырья составляет 4,6-4,8 т на 1 т 100%-ного водорода расход кислорода-0,75-0,8 нм на I кг сырья пара-0,4-0,6 кг/кг выход газа-около 3 нм /кг. В качестве сырья в процессе могут использоваться углеводороды от газообразных до тяжелых нефтяных остатков. Схема процесса позволяет получить синтез-газ с различным отношением Н2 С0, водород или одновременно синтез-газ и водород. Применительно к установке мощностью 20 тыс.т водорода в год стоимость водорода газификации по сравнению с паровой каталнтической конверсией на 15-20% выше в первую очередь за счет производства технического кислорода. Однако применение установок газификации под повышенным давлением позволяет снизить расход энергии на сжатие получаемого водорода в первую очередь для процесса гидрокрекинга. [c.7]

    Ранее для изучения кинетики паровой конверсии углеводородов применяли проточные установки с реактором интегрального типа, хотя давно известны преимущества дифференциальных проточно-циркуляци-онных реакторов, которые получили широкое применение при изучении кинетики многих низкотемпературных и среднетемпературных реакций. Каталитическая активность изучаемых образцов в процессе паровой конверсии бутана впервые была изучена на проточно-циркуляционной установке. Нами был применен разъемный безградиентный кварцевый реактор [12]. [c.110]

    Реакции гидрогазификации в реакторе идут при температурах, несколько меньших, чем минимальные температуры в реакторе типа ГРГ или ему подобных. Катализатор, применяемый в гидрогазификаторе, аналогичен тому, который используется при низкотемпературной конверсии, т. е. богатый никелем на алюминиевой основе. Однако осуществляемая при этом технология процесса отличается от технологии низкотемпературной паровой конверсии тем, что катализатор должен периодически подвергаться регенерации. Этим достигается двойной эффект с одной стороны (что весьма важно), уменьшается опасность загрязнения серой, а с другой, обеспечиваются условия, способствующие удалению отложившегося полимерного углерода. Регенерация катализатора осуществляется, как правило, водородом, т. е. вместо продувки его смесью пара (выходящего низкотемпературного газа и паров дополнительного количества углеводородов) катализатор восстанавливается водородом максимальной степени чистоты. Реакции, протекающие в установке каталитической гидрогазификации, исключительно сложны. Высокая степень метанизации не только понижает содержание водорода и окислов углерода, но и обеспечивает условия реагирования ос- [c.126]


Смотреть страницы где упоминается термин Установки паровой каталитической конверсии углеводородов: [c.36]    [c.45]    [c.267]    [c.267]    [c.187]   
Смотреть главы в:

Производство водорода в нефтеперерабатывающей промышленности -> Установки паровой каталитической конверсии углеводородов




ПОИСК





Смотрите так же термины и статьи:

Установка углеводородов



© 2025 chem21.info Реклама на сайте