Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика электродных процессов

    Основными разделами электрохимии являются учение об электролитах, главным образом о водных растворах электролитов термодинамика электродных процессов, т. е. учение об электрохимических равновесиях на поверхности раздела, и кинетика электродных процессов, т. е. учение о скоростях процессов, происходящих на поверхности раздела фаз при участии двойного электрического слоя. [c.360]


    ТЕРМОДИНАМИКА ЭЛЕКТРОДНЫХ ПРОЦЕССОВ 1. Термодинамика гальванического элемента [c.152]

    Термодинамика электродных процессов. Термодинамическое условие возможности протекания коррозионного процесса. [c.118]

    Проблема коррозии тесно связана с изучением электродных реакций, поскольку в этих случаях процессы протекают непосредственно на электроде. Электродные реакции можно моделировать, меняя внешний химический потенциал, можно также менять условия (например, освещенность), регулируя процессы окисления и восстановления, наконец, термодинамика электродных процессов вполне поддается изучению. [c.11]

    Электрохимия является разделом физической химии, в котором изучаются законы взаимодействия и взаимосвязи химических и электрических явлений. Основным предметом электрохимии являются процессы, протекающие на электродах при прохождении тока через растворы (так называемые электродные процессы). Можно выделить два основных раздела электрохимии термодинамику электродных процессов, охватывающую равновесные состояния систем электрод — раствор, и кинетику электродных процессов, изучающую законы протекания этих процессов во времени. Однако электрохимия изучает не только электродные процессы. В этот раздел физической химии нередко включают также теорию электролитов, причем изучаются свойства электролитов, не только связанные с прохождением тока (электропроводность и др.), но и другие свойства электролитов (вязкость, сольватация, химические равновесия и др.). Теорию электролитов можно также рассматривать как часть общего учения о растворах, однако в настоящем курсе она включена в раздел электрохимии. [c.360]

    ТЕРМОДИНАМИКА ЭЛЕКТРОДНЫХ ПРОЦЕССОВ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ [c.25]

    ТЕРМОДИНАМИКА ЭЛЕКТРОДНЫХ ПРОЦЕССОВ 1. ТЕРМОДИНАМИКА ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА [c.148]

    При изучении термодинамики электрохимических процессов достаточно знать, что изменение энергии электрохимического элемента полностью определяется химическими реакциями на электродах. Однако при изучении кинетических закономерностей необходимо также знать механизм электродных процессов. Изменения в строении двойного электрического слоя на электродах, которые не сказываются на равновесных значениях электродных потенциалов, влияют на скорости электрохимических реакций. Поэтому при изучении кинетики электродных процессов очень важно знать потенциалы нулевого заряда, а также молекулярное строение границы электрод — раствор. [c.536]

    Отличительная особенность этого учебного пособия по курсу физической химии (1-е изд. — т. I— 1965 г.. т. 2.— 1967 г.)—четкое теоретическое обоснование рассматриваемых вопросов, способствующее углубленному пониманию таких важнейших разделов, как химическая и статистическая термодинамика, равновесие в гомогенных и гетерогенных системах, электродные процессы и др. [c.247]


    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Непосредственно после создания первого источника электрической энергии вопрос о скорости электродных процессов в явном виде не был поставлен. Он возник позже, когда электрический ток начали широко использовать для осуществления различных электрохимических превращений и выяснили, что разность потенциалов, которую необходимо приложить к электродам для осуществления того или иного процесса, не соответствует предсказываемой термодинамикой. Первоначально отклонение потенциала от равновесного значения при пропускании тока, получившее название перенапряжения (1899), связывали с изменением концентрации веществ у электрода, что в соответствии с [c.9]

    Как и для обычных химических процессов, скорость электрохимических реакций, лимитирующей стадией которых является замедленный разряд, зависит от температуры. Чтобы проанализировать эту зависимость, необходимо ознакомиться с термодинамикой отдельного электродного процесса. [c.245]

    При изучении термодинамики гальванических элементов (электрохимических цепей) рассматривают суммарный процесс, протекающий в системе. При этом зависимость э. д. с. от температуры выражается соотношением Гиббса— Гельмгольца. Термодинамика отдельного электродного процесса обладает рядом характерных особенностей. При протекании отдельной электродной реакции 0+пе Н соответствующее изменение свободной электрохимической энергии может быть выражено через электрохимические потенциалы участвующих в реакции компонентов  [c.246]

    Выполнение соотношения Бренстеда — Поляни — Семенова эквивалентно тому, что изменение энтропии А5 в ходе отдельного электродного процесса не зависит от электрической разности потенциалов на исследуемой границе металл — раствор. В этих условиях даже при отсутствии равновесия на границе металл — раствор для отдельного электродного процесса оказывается справедливым второе начало термодинамики, записанное в виде [c.247]

    Отметим, что линейная зависимость между током и перенапряжением при малых т1 представляет собой частный случай общего линейного соотношения между скоростью и сродством реакции в термодинамике необратимых процессов, причем для электродной реакции, сопровождающейся переносом п электронов, роль сродства реакции играет величина пРц. [c.224]

    Возможно большая величина ЭДС. Величину ЭДС источника тока можно рассчитать по законам электрохимической термодинамики. Однако необходимо учитывать, что по достижении определенной разности потенциалов на электродах источника тока становится возможным протекание реакций с участием молекул растворителя. Так, в водных растворах, когда разность потенциалов между электродами превышает 1,23 В (см. табл. VI. 1), на одном из электродов может выделяться водород, а на другом — кислород. Поэтому создание источника тока с водными растворами электролитов и с ЭДС >1,23 В с точки зрения электрохимической термодинамики кажется невозможным. На самом деле созданы источники тока, использующие водные растворы с ЭДС>1,23 В. Это объясняется тем, что токи обмена реакции выделения водорода и кислорода на ряде электродов малы, т. е. эти электродные процессы протекают с большим перенапряжением. В результате перенапряжения верхняя граница ЭДС источников [c.259]

    В предыдущих разделах этой главы были рассмотрены вопросы термодинамики гальванических элементов и электродных процессов. Было показано, что источником электрической энергии гальванического элемента является химическая реакция, свободная энергия которой определяет величину э. д. с. Так, например, э. д. с. элемента Якоби (рис. IX.3) определяется работой, выигрываемой при переносе электрона от медного проводника, присоединенного к цинковому электроду, к медному проводнику, находящемуся в контакте с медным электродом. [c.187]


    Химическая термодинамика использует положения, законы и теоретические методы общей термодинамики в применении к разнообразным химическим проблемам учение о тепловых эффектах химических реакций (термохимия), учение о химическом и фазовом равновесии, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. На основании законов термодинамики проводятся все энергетические расчеты химических процессов и химического равновесия, что имеет особое значение для химии и химической технологии. [c.7]

    Возникновение электрохимии как науки связано с именами Гальвани, Вольта и Петрова, которые на рубеже XVHI и XIX веков открыли и исследовали электрохимические (гальванические) элементы. Деви и Фарадей в первые десятилетия XIX века изучали электролиз. Быстрое развитие электрохимии в конце XIX века связано с появлением теории электролитической диссоциации Аррениуса (1887) и с работами Нернста по термодинамике электродных процессов. Теория Аррениуса развита Дебаем и Гюккелем (1923), которые разработали электростатическую теорию. [c.384]

    В предыдущих главах были рассмотрены равнове ные состояния процессов внутри электролитов с участием ионов (электролитическая диссоциация, гидролиз, сольватация и т. д.) и процессов на электродах (электрохимические реакции и характеризующие их параметры — обратимые электродные потенциалы). Эти состояния не зависят от времени, к ним применимы оба основных закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а раздел электрохимии, посвященный им, — термодинамикой электрохимических процессов. Для электродных процессов равнопесие характеризуется отсутствием электрического тока. [c.605]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии совершается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металл1 ческий проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]

    Ионика и электродика исследуют как равновесные, так и неравновесные явления и процессы. Изучение свойств ионных систем в равновесных условиях позволяет развить представления о строении растворов и расплавов электролитов и твердых электролитов, тогда как измерения в неравновесных условиях дают сведения об электропроводности ионных систем, а также о кинетике ионных реакций. В электро-дике исследованием равновесий на границе электрод — раствор (расплав) занимается электрохимическая термодинамика. Измерения скоростей процессов на этой границе и выяснение закономерностей, которым они подчиняются, составляют объект кинетики электродных процессов или электрохимической кинетики. В настоящее время кинетика электродных процессов представляет собой одно из наиболее быстро развивающихся направлений теоретической электрохимии. [c.6]

    Взаимосвязь между кинетикой электродных процессов и прикладной электрохимией можно наиболее наглядно показать на примере электролиза воды. Составим электрохимическую ячейку, использовав раствор серной кислоты, ртутный катод и платиновый анод. При пропускании тока через эту систему происходит выделение водорода на ртути и кислорода на платине. Минимальную разность потенциалов, необходимую для осуществления такого процесса, легко подсчитать, изучив химическую реакцию 2На+02- - 2НзО при различных температурах. Затем на основе термодинамических соотношений можно сделать вывод, что эта реакция должна протекать при разности потенциалов на электродах 1,23 В. Однако при этой разности потенциалов для накопления 1 см водорода с 1 см поверхности электрода потребовалось бы вести электролиз почти полмиллиона лет. Термодинамика, давая ответ на вопрос о принципиальной возможности того или иного процесса, не позволяет рассчитать его скорость. В рассмотренных условиях скорость электродной реакции оказывается настолько малой, что реакция практически не идет. Если увеличить разность потенциалов до 3,5 В, то выделение водорода происходит с видимой скоростью, однако к. п, д. =(1,23/3,5)100 =35%, Остальные 65% электроэнергии превращаются в теплоту. Чтобы повысить к. п. д., необходимо увеличить скорость электродных процессов. Если вместо ртутного электрода в качестве катода использовать специальным образом обработанный платиновый, то удается увеличить скорость выделения водорода в 1 млрд. раз. [c.13]

    При изучении термодинамики гальванических элементов (электрохимических цепей) рассматривают суммарный процесс, протекающий в системе. В этом случае зависимость э. д. с. от тeмпepafypы выражается соотношением Гиббса — Гельмгольца. Термодинамика отдельного электродного процесса обладает рядом характерных особенностей. [c.261]


Смотреть страницы где упоминается термин Термодинамика электродных процессов: [c.253]    [c.4]    [c.217]    [c.2]   
Смотреть главы в:

Физическая химия -> Термодинамика электродных процессов

Физическая химия -> Термодинамика электродных процессов

Физическая химия изд №2 -> Термодинамика электродных процессов




ПОИСК





Смотрите так же термины и статьи:

Процесс электродные

Электродный процесс Процесс электродный



© 2024 chem21.info Реклама на сайте