Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы главных подгрупп (подгрупп А) периодической системы

    Молекулярная масса сульфида некоторого элемента главной подгруппы четвертой группы Периодической системы элементов относится к молекулярной массе бромида этого же элемента, как 23 87. Определите атомную массу элемента. Что это за элемент Проанализируйте возможные варианты решения задачи. [c.8]

    Каковы общие закономерности изменения физических и химических свойств простых веществ, образуемых элементами главных подгрупп периодической системы элементов а) в периоде б) в группе  [c.218]


    Сопоставьте свойства солей элементов главных подгрупп первой и второй групп периодической системы химических элементов Д. И. Менделеева галогенидов, сульфатов, сульфидов, карбонатов. Объясните изменение их растворимости в воде, термической устойчивости в группах и при переходе от первой группы ко второй. [c.159]

    И р-Элементы — это элементы главных подгрупп периодической системы Д. И. Менделеева. Каждый период системы начинается двумя 5-элементами, а шесть его последних элементов (кроме 1-го периода) — это р-элементы. [c.264]

    Элементы главной подгруппы шестой группы периодической системы — это кислород, сера, селен, теллур и полоний. Последний из них — радиоактивный металл известны как природные, так и искусственно полученные его изотопы. [c.452]

    Бор с алюминием, галлием, индием и таллием образуют главную подгруппу П1 группы элементов периодической системы. Остальные элементы III группы — скандий, иттрий, актиний, а также лантан и стоящие с ним в одной клетке так называемые лантаниды или металлы редких земель, образуют побочную подгруппу — подгруппу скандия. Технически наиболее важными элементами III группы являются бор и алюминий. Металлы аод-группы скандия очень редкие и по свойствам все близки редкоземельным элементам, вместе с которыми они и будут рассмотрены в 64-й главе книги. [c.201]

    Для непереходных элементов окислительные числа можно предсказать на основе электронного строения последних и стремления их к достижению устойчивой электронной конфигурации с 2, 8 и 18 электронами. Для непереходных элементов главных подгрупп периодической системы Д. И, Менделеева высшие окислительные числа равны номеру ее группы. Окислительные числа одного и того же элемента отличаются обычно на величину, кратную двум. Это связано с тем, что элементы главных подгрупп периодической системы теряют или обобщают электроны парами. [c.16]

    Напишите символы элементов главных подгрупп (а) периодической системы,, элементов побочных подгрупп (Ь) и элементов второго и третьего периодов. [c.63]

    Величина энергии ионизации зависит не только от заряда ядра и радиуса атома, но и от воздействия, вызванного волновыми свойствами электронов. Так, энергия ионизации элементов в побочных подгруппах периодической системы меняется незакономерно и с ростом заряда она обычно не уменьшается, как в главных подгруппах, а растет. [c.90]

    ЭЛЕМЕНТЫ ГЛАВНЫХ ПОДГРУПП (ПОДГРУПП А ) ПЕРИОДИЧЕСКОЙ СИСТЕМЫ [c.270]

    Получение металлоорганических соединений главных подгрупп элементов Периодической системы [c.536]


    Элементы второго малого периода (натрий и т. д.) обнаруживают другую особенность, а именно из всех элементов главных подгрупп они оказываются в каждом случае наиболее близкими к элементам своих побочных подгрупп иногда это сходство между ними простирается до такой степени, что они в некоторых отношениях подходят ближе к элементам побочной подгруппы, чем к элементам своей главной подгруппы. Сильнее всего это проявляется примерно в середине периодической системы, а именно в III и IV группах. [c.40]

    Общие замечания. Главная подгруппа группы периодической системы включает элементы литий, натрий, палий, рубидий и цезий, а также крайне нестабильный элемент франций. Последний встречается в ряду радиоактивного распада актиния (см. т. II). Все эти элементы объединяют под общим названием щелочные металлы, так как гидроокиси главных Представителей (натрия и калия) этой подгруппы известны под названием щелочей . Щелочные металлы очень мягки и обладают весьма низким для металлов удельным весом. Характерна их чрезвычайная легкоплавкость, а также низкие точки кипения. [c.177]

    Основные свойства элементов главной подгруппы пятой группы удовлетворительно объясняются на основе теории валентности. Наивысшая положительная валентность (пятивалентность) элементов с порядковыми номерами 7, 15, 33, 51 и 83 следует, по теории Косселя, из того, что каждый из них содержит на пять электронов больше по сравнению с особенно устойчивыми конфигурациями с 2, 10, 28, 46 и 78 электронами (см. рис. 28 на стр. 136). Трехвалентность элементов главной подгруппы пятой группы по отношению к электроположительным элементам, например к водороду, также объясняется стремлением их приобрести особенно устойчивые электронные конфигурации, а именно такие, которые имеются у инертных газов, стоящих в периодической системе после элементов главной подгруппы пятой группы. [c.566]

    К щелочноземельным металлам относят элементы главной подгруппы II группы периодической системы кальций Са, стронций 8г, барий Ва и радий Ка. Кроме них, в эту группу входят бериллий Ве и магний Mg. На внешнем слое атомов щелочноземельных металлов находится два я-электрона. Во всех соединениях они проявляют степень окисления +2. Активность металлов растет с увеличением атомного номера. Все эти элементы — типичные металлы, по свойствам близкие к щелочным. [c.146]

    Степени окисления закономерно изменяются при переходе от одного элемента к другому в периодической системе. Высшая степень окисления элементов в группе обычно равна номеру группы таким образом, в периодах высшая степень окисления растет. П главных подгруппах при переходе от элементов сверху вниз обычно становятся более устойчивыми низкие степеннокисления,в побочных подгруппах — наоборот, более высокие. [c.45]

    Почти все элементы главных подгрупп IV—VII групп периодической системы представляют собой неметаллы, в то время как [c.646]

    Приведенные сведения по химии элементов подразделены на основной текст и дополнений. Элементы рассматриваются в соответствии с подгруппами периодической системы (длиннопериодный вариант), причем сначала описаны главные подгруппы (5- и р-элементы), затем побочные ( -элементы, в порядке возрастания числа -электронов). В конце книги кратко изложена химия лантаноидов и актиноидов. В дополнениях вещества классифицированы по степеням окисления пи. В тех случаях, когда определить м) затруднительно, ее обычно считают нулевой. [c.295]

    Развивая основной закон химии — периодический закон, его автор, Д. И. Менделеев разработал также систему элементов , основанную на их атомном весе и химическом сходстве. Благодаря этому ученым удалось установить взаимосвязь между всеми химическими элементами, предугадать и открыть новые химические элементы. Ниже приводится краткий обзор свойств элементов главных подгрупп периодической системы, начиная с галогенов (табл. 13). [c.58]

    Как изменяются физические и химические свойства оксидов элементов главной подгруппы IV группы с увеличением порядкового номера элемента Обратите внимание на их агрегатные состояния, плотность, термическую устойчивость, отношение к воде. 0 5-72. Какие из оксидов элементов главной подгруппы IV группы периодической системы реагируют со щелочами и кислотами Напишите уравнения реакций. [c.42]

    Поскольку проникающая способность уменьшается в ряду 5>р><1, внутренняя периодичность в изменении свойств наиболее отчетливо. проявляется в свойствах элементов, определяемых з-электронами. Поэтому она наиболее типична для соединений элементов главных подгрупп периодической системы, отвечающих высшей степени окисления элементов (участие всех внешних 8- и р-электронов). [c.38]

    Большинство простых веществ является типичными металлами. У ряда элементов металлическими свойствами обладают лишь некоторые их модификации. К металлам относятся элементы главных подгрупп первых четырех групп периодической системы, все элементы с внешними й(- и /-оболочками электронов. Несколько модификаций, как с металлическими, так и с неметаллическими свойствами, образуют, например, С, Р, Аз, 8Ь, 5е. Устойчивость отдельных модификаций сильно зависит от внешних условий. В последнее время подробно исследовано влияние давления на фазовые превращения. Установлены общие [c.359]


    Мягкие кислоты — большие катионы с деформируемой электронной оболочкой (элементы главных подгрупп периодической системы, например s+, TI+), а также катионы переходных металлов, в электронной оболочке которых имеются d-электроны (например, Си+, Hg2+). Электронные оболочки -электронов имеют сравнительно большой радиус, в результате чего становится возможным их взаимодействие с электронными оболочками лигандов-оснований. Мягкость соединений увеличивается по мере уменьшения положительного заряда иона. Поэтому наиболее мягкими являются соединения, в которых атом металла не имеет заряда или даже заряжен отрицательно. Рч мягким кислотам относятся также катионы неметаллов (I+, Вг+), электрофильные молекулы с деформируемой электронной оболочкой (Ь, I I), а также реакционноспособные атомы и свободные радикалы (О, С1, Вг). [c.397]

    Сопоставление температур плавления и кипения углерода и его аналогов показывает, что они изменяются противоположным образом по сравнению с температурами плавления и кипения элементов главных подгрупп VII, VI и V групп периодической системы. Забегая вперед, можно отметить, что в главных подгруппах III, II и I групп так же, как и в подгруппе углерода, температуры плавления закономерно уменьшаются при переходе от легких аналогов к тяжелым. Не следует, однако, делать поспешного вывода о том, что у элементов I—IV групп металлические свойства ослабевают сверху вниз. Последовательное нарастание металлических свойств при переходе от легких элементов к тяжелым остается непреложным правилом для всех элементов главных подгрупп периодической системы Д. И. Менделеева. Падение температур плавления и кипения при переходе от углерода к свинцу отражает закономерное ослабление межатомных связей в кристаллических решетках простых веш,еств по мере уменьшения степени ковалентности связи и увеличения размеров атомов. [c.94]

    Строение двухатомных молекул состава НЭ. Метод МО позволяет легко объяснить прочность и реакционную способность молекул состава НЭ, где Э — элемент главной подгруппы VII группы периодической системы. В соответствии с электронными конфигурациями атомов водорода 1Н и, например, хлора 17 С1... Зз р или подробнее. .. Зв р Ру р  [c.126]

    УША-подгруппы периодической системы. Поэтому в настоящей главе рассмотрим свойства элементов, образующих главные подгруппы I и П групп периодической системы (1А- и ПА-подгруппы). [c.379]

    Рассматривая соединения, в которых элементы обнаруживает характерную для их места в периодической сйстеме валентность, в общем как гетерополярные, Коссель рассчитал для первых 57 элементов, до подгруппы лантанидов, количества электронов, которыми они обладают в тех соединениях, где они проявляют высшую отрицательную и высшую положительную валентности. На оси абсцисс рис. 28 элементы расположены в соответствии с их порядковыми числами и через равные промежутки рассчитанное Косселем для каждого элемента число электронов нанесено в качестве ординаты и отмечено черной точкой. Те элементы, которые лиогут быть заряжены и отрицательно и положительно, имеют по две черные точки, которые конечно расположены на одной вертикали одна над другой на расстоянии 8 единиц в соответствии с тем фактом, что сумма положительных и отрицательных высших валентностей равна 8, на что указывал еще Аббег. Кружки на рисунке соответствуют числу электронов для элементов в состоянии нейтральных атомов. В то время как эти числа естественно возрастают от элемента к элементу на одинаковую величину и соответственно этому лежат на прямой, расположенной под углом 45° к оси абсцисс, черные точки для элементов, расположенных рядом с инертными газами, все лен ат на прямых, параллельных осп абсцисс, и находятся от нее на том же расстоянии, как и точка, обозначающая число электронов инертного газа, вокруг которого группируются элементы. Это значит, что число электронов, которыми обладают атомы элементов, стоящих рядом с инертными газами (т. е. элементов главных подгрупп периодической системы) в своих типичных соединениях, равно числу электронов ближайшего инертного газа. И отсюда следует .если два элемента, например натрий и фПгор, образуют химическое соединение, то один из них отдает другому такое количество электронов, что у каждого из них после этого остается столько электронов, сколько их имеет ближайший инертный газ. [c.151]

    У всех элементов главных подгрупп заполняются в I и II группах s-подуровни. Это будут s-элементы. У всех элементов главных подгрупп III—VIII групп заполняются внешние р-подуроБНи. Это будут р-элементы. У элементов побочных подгрупп заполняется внутренний /-подуровень. Это будут d-элементы. Они входят в состав только больших периодов и занимают десять мест между s- и р-элементами. В шестом и седьмом периодах между первым и вторым /-элементами вклиниваются по 14 /-элементов. Это лантаноиды и актиноиды. У /-элементов заполняется более глубокий /-подуровень, что и объясняет близость свойств этих элементов и их особое положение в периодической системе. [c.67]

    К -элементам относят подгруппу щелочных металлов (Ы, Ка, К, ИЬ, Сй, Рг) со стру1 турой внешнего слоя 1, главную подгруппу второй группы (Ве, Мд, Са, 8г, Ва, Ка) со структурой а также водород и гелий. Всего в периодической системе 14 -элементов. [c.80]

    Электроотрицательные партнеры комплексных ионов поляризуются действием поля центральных атомов кроме того, электроположительная центральная составляющая может подвергаться деформации. Из этой составляющей исходят поляризуюище силы, и она сама делается поляризуемой. Как правило, металлообразующие элементы побочной подгруппы А периодической системы обладают более высокой поляризуемостью и более сильным поляризующим действием, чем металлообразующие элементы главной группы. [c.235]

    К главной подгруппе Тгруппы периодической системы относятся следующие элементы литий (Ъ1), натрий (Ка), калий (К), рубидий (КЬ), цезий (Сб) и франций (Гг) они называются щелочными металлами. [c.39]

    Атомы элементов главной подгруппы VUI группы периодической системы и нормальном состоянии не содержат непарных элек-тронов. Этим и объяснялась инертность этих элементов, т. е. неспособность их атомов к образованию химических соединений. Очевидно, что возбуждение атомов гелия и неона не может привести к появлению непарных электронов, соответственно, в первом и втором уровне их электронных оболочек. Однако у других элементов этой группы — аргона, криптона, ксенона и радона — благодаря наличию на нарул<ных уровнях их электронных оболочек свободных -орбиталей возбуждение может привести к появлению непарных электронов, причем число их может достигнуть восьми. С эт[1м, естественно, связана возможность образования этими элементами химических соединений, в которых валентность элементов может достигать восьми. В последние годы [c.46]

    Жесткие кислоты. Электронная оболочка жестких кислот характеризуется высокой стабильностью относительно внешних электрических полей. Наиболее жесткой кислотой является протон, который из-за отсутствия электронной оболочки и чрезвычайно малого радиуса прочно связывается с активным центром молекулы основания. Недеформируемой электронной оболочкой обладают также катионы с электронной конфигурацией инертного газа, такие как Са +, АР+, Т1 +, в которых электрические и магнитные моменты всех электронов полностью скомпенсированы. Эти катионы образованы в основном элементами главных подгрупп периодической системы. К последним близки по свойствам некоторые катионы переходных металлов с не полностью занятой d-oбoлoчкoй, например Мп + и Ре +. Способность к присоединению оснований возрастает по мере увеличения ионного потенциала. Кроме того, к жестким [c.396]

    Атомы элементов главной подгруппы V группы периодической системы имеют во внешних электронных оболочках 5 электронов. В соответствии с этим для азота и его аналогов должны быть характерны отрицательная валентность —3 и высшая положительная валентность 4-5. Однако если предположение о высшей положительной валентности, равной +5, в полной мере обосновано для аналогов азотафосфора, мышьяка — сурьмы и висмута, то для самого азота оно может быть принято лишь условно. В самом деле, свою высшую положительную валентность элементы проявляют обычно в соедине- [c.77]

    Такая конфигурация типична для соединений элементов главной подгруппы П1-Й группы периодической системы и др. Например, в трихлориде бора — ВС1з все три равноценные связи располагаются под углом 120°. [c.134]

    Атомы элементов главной подгруппы VIII группы периодической системы обладают повышенной химической прочностью потому, что их внешние электронные оболочки, имеющие 2 или 8 электронов, характеризуются большой устойчивостью. [c.143]

    Поэтому наиболее слабыми комплпксообразователями являются благородные газы и элементы главных подгрупп I и УП групп периодической системы (щелочные элементы и галогены). Максимальная комплексообразующая способность наблюдается у -элементов УП1 группы (элементы семейства железа и платиновые металлы), а также у элементов побочных подгрупп I и И групп периодической системы. [c.365]

    Большинство элементов главных подгрупп IV — УП групп периодической системы представляют собой неметаллы, в то время как элементы побочных подгрупп — металлы. Поэтому в правой части периодической системы различия в свойствах элементов главных и побочных подгрупп проявляются особенно резко. Однако в тех случаях, когда элементы главной и побочной подгруппы находятся в высшей степени окисления, их аналогичные соединения проявляют существенное сходство. Так, хром, расположенный в побочной подгруппе VI группы, образует кислотный оксид СгОз, близкий по свойствам к триоксиду серы ЗОз-Оба эти вещества в обычных условиях находятся в твердом состоянии и образуют при взаимодействии с водой кислоты состава Н2ЭО4. Точно так же оксиды марганца и хлора, соответствующие высшей степени окисления этих элементов, [c.496]


Смотреть страницы где упоминается термин Элементы главных подгрупп (подгрупп А) периодической системы: [c.18]    [c.72]    [c.61]    [c.160]    [c.47]    [c.109]    [c.334]    [c.59]   
Смотреть главы в:

Курс химии -> Элементы главных подгрупп (подгрупп А) периодической системы




ПОИСК





Смотрите так же термины и статьи:

Главная подгруппа

Периодическая система

Периодическая система элементо

Периодическая система элементов

Элемент главный

Элемент периодическая



© 2025 chem21.info Реклама на сайте