Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные способы проведения экстракции

    В настоящее время для обнаружения наркотических веществ в биологических жидкостях человека используют сочетание физико-химических и иммунохимических способов определения. В первой группе наибольшее распространение получили методы, основанные на различных хроматографических приемах, либо их сочетании с другими высокочувствительными способами анализа (газожидкостная, тонкослойная хроматография, хроматомасс-спектрометрия, высокоэффективная хроматография под давлением). Основное достоинство этих методов заюшчается в том, что они позволяют определять с высокой чувствительностью индивидуальные по структуре соединения, используя при этом стандартные эталоны веществ. Однако для проведения анализа данными методами требуется специальное дорогостоящее оборудование, обученный персонал, время определения значительно увеличивается за счет предварительной обработки исследуемых образцов, что связано с экстракцией биологической жидкости и получением легколетучих производных анализируемой пробы. Все это значительно усложняет процедуру проведения анализа и делает ее дорогостоящей. [c.198]


    В химической технологии используются в основном следующие способы проведения экстракции однократная экстракция, многократная экстракция с перекрестным и противоточным движением растворителя, непрерывная противоточная экстракция. Наибольшее распространение в промышленности получила экстракция одним растворителем, хотя находит применение и экстракция двумя экстрагентами. [c.154]

    При определении столь низких концентраций редко удается проводить прямое колориметрическое определение или даже только реакцию образования окрашенного соединения непосредственно в растворе после обработки анализируемого материала кислотами. К числу немногих прямых методов, являющихся наиболее простыми по выполнению, относятся, апример, методы определения никеля в индии и сурьме, селена в мышьяке, фосфора в индии (см. настоящий сборник). В большинстве случаев при анализе высокочистых металлов, когда исходная навеска составляет не менее 0,5 г, присутствие в растворе основного элемента оказывает помехи проведению определения могут мешать и другие примесные элементы. Поэтому определению предшествует отделение искомого элемента тем или иным подходящим способом, зависящим как от химических свойств элемента-основы, так и примеси. Методы, принятые при анализе 1п, Оа, Аз и ЗЬ, наиболее часто используют для отделения специфические реакции элементов-примесей. Описаны и применяются три способа выделения определяемых элементов экстракция органическим растворителем соосаждение с коллектором отгонка в виде легколетучего соединения. [c.130]

    ОСНОВНЫЕ СПОСОБЫ ПРОВЕДЕНИЯ ЭКСТРАКЦИИ [c.153]

    Аппараты, используемые для проведения процесса экстракции, называются экстракторами. Время пребывания жидкостей в них определяется в большинстве случаев скоростью переноса массы из одной фазы в другую за счет взаимодействующих между собой процессов молекулярной и конвективной диффузии. Именно поэтому процесс экстракции относится к классу массообменных процессов химической технологии. Причины возникновения диффузионного потока рассмотрены в 1.4.1. Скорость процесса молекулярной диффузии в жидкостях очень мала, поэтому основная функция аппаратов для проведения процесса экстракции заключается в том, чтобы максимально интенсифицировать процесс массопереноса. Принципы и способы такой интенсификации, вытекающие из теории массопереноса, которая подробно рассматривается в разделе 5, достаточно хорошо известны. [c.36]


    Проста и удобна, например, для быстрого подбора необходимого растворителя методика круговой ТСХ. За очень короткое время (1—2 мин.) она позволяет проводить тонкие разделения. Растворитель подают с помощью специального приспособления в центр нанесенного на тонкий слой пятна. Вещества разделяются с образованием зон в виде концентрических колец. Этот способ целесообразно использовать при разделении основного компонента и примеси. С помощью круговой ТСХ были разделены благородные металлы [203, 204], Си, Со, N1 [209], ряд анионов [206], разделены катионы внутри различных аналитических групп [208], проведен качественный полумикроанализ с обнаружением 40 катионов и 19 анионов после их предварительного разделения экстракцией на 5 групп [207]. Метод круговой ТСХ применен при качественном анализе некоторых минералов и других веществ. [c.19]

    В главе Фотохимия обсуждается природа различных фотохимических процессов, приводятся данные о свойствах ряда сенсибилизаторов и тушителей, источниках света, фильтрах и другом оборудовании (в том числе о лазерах), используемом для проведения фотохимических реакций. В шестой главе ( Хроматография ) подробно описаны основные виды хроматографии и указаны важнейшие адсорбенты, растворители, газы-носители, типы неподвижных фаз и свойства детекторов. В главе Экспериментальная техника перечислены свойства основных материалов, используемых в лабораторной практике, указаны составы растворов для мытья химической посуды, даны советы по очистке растворителей, по обнаружению в растворах перекисей и их удалению приведены химические методы определения некоторых газов и способы получения сухих газов перечислены распространенные растворители для кристаллизации и экстракции из водных растворов, а также высушивающие агенты и составы бань для нагревания и охлаждения указаны способы определения молекулярных весов. В конце главы приведены некоторые сведения, необходимые для безопасной работы с наиболе распространенными химическими веществами (данные о воспламеняемости, токсичности, взрывоопасности и т. п., средства для тушения, методы хранения). [c.6]

    В работе [зз], в патенте [44] приведена технологическая схема узла регенерации растворителя и условия работы основных аппаратов (экстрактора, сепаратора) при црименении в качестве растворителя н-пентана и изобутана (рис. 6). Согласно описанию в [44] экстракция гудрона ведется н-пентаном при температуре 149°С и давлении 0,98 МПа, а регенерация растворителя осуществляется в сепараторе, в который деасфальтизатный раствор попадает после обогрева в теплообменнике и пароаерегревателе 1фи температуре 202-203°С, давлении 3,8-4,О МПа, либо цри температуре 214°С, давлении 4,75 МОа. В этих условиях большая часть растворителя отделяется и возвращается на стадию экстракции, а остаток растворителя далее отпаривается от деасфальтизата обычным способом. При проведении экстракции гудрона изобутаном условия были следующими температура 115°С, давление 3,7 МПа [44]. Регенерация растворителя осуществляется по той же схеме (см. рис.6) в сепараторе цри температуре 144°С и давлении 4,2 МПа. В патенте [45], где в качестве [c.30]

    Впервые использованные в нефтяном анализе лишь 20 лет назад ионообменные процессы [113] стали сейчас важным способом выделения и фракционирования кислых и основных соединений из нефтей и нефтяных фракций, вытесняюш им из аналитической практики методы кислотной и ш,елочной экстракции. Большой интерес вызывает проведение этих процессов в системе с неводным элюентом, при котором исчезает барьер растворимости и исключается возможность гидролиза образующихся солей. Смещение реакции в неводных средах в сторону со-леобразования обеспечивает удерживание в слое сорбента даже очень слабых оснований (piTh,g 9—14) [114]. Благодаря специфическому взаимодействию с поверхностью на ионитах могут делиться и некоторые неионогенные соединения [115]. [c.16]

    Более удобным способом получения г ис-гликолей является проведение гидроксилирования с помощью подходящего окисляющего агента и использование лишь каталитических количеств 0з04. Окислителями могут быть хлораты металлов, перйодаты, кислород и пероксид водорода [18]. При использовании некоторых окислителей основными продуктами могут быть а-оксоспирты, альдегиды илн кетоны, образующиеся при расщеплении двойной углерод-углеродной связи. Хлораты металлов, в частности солн бария или серебра, обычно дают наилучшие результаты. Как правило, алкен (1 моль) растворяют или суспендируют в воде (1500 мл), содержащей 0з04 (0,5г) и постепенно при частом встряхивании в течение нескольких часов добавляют хлорат бария (64 г). Избыток хлората восстанавливают с помощью ЗОг продукт выделяют экстракцией или кристаллизацией. Так, используя эту методику, 4-хлор-кротоновую кислоту превращают в соответствующую дигидро-ксикислоту с выходом 50% [19] [схема (8.5)]. [c.326]

    Предложены [35—37] способы соосаждения нефтепродуктов на гидроокисях алюминия, железа и магния, которые рекомендуются особенно при низких концентрациях нефтепродуктов в воде. Для полного извлечения нефтепродуктов, содержаш ихся в концентрациях от 0,001 мг/л [31, 38], целесообразно сорбировать их на активном угле с последующей десорбцией небольшими объемами органического растворителя, что обеспечивает значительное концентрирование. Некоторые авторы [39] предлагают вместо активного угля использовать специальные сорбенты, например эко-перл, экоперлит и т. д. Метод, основанный на сорбции нефтепродуктов на активном угле и других сорбентах, более длителен, требует стандартизации при проведении анализа и может быть рекомендован лишь в случае очень низких (тысячные доли миллиграмма на литр) концентраций, когда прямая экстракция затруднительна из-за необходимости обработки значительных (10 л и более) объемов проб воды. Использование метода, основанного на соосаждении нефтепродуктов на гидроокисях металлов, вряд ли целесообразно, поскольку ни по чувствительности, ни по быстроте выполнения он не имеет преимуществ перед прямой экстракцией. Основной его недостаток — неполнота и невоспроизводи-мость результатов по извлечению нефтепродуктов из воды (по нашим данным процент выделения колеблется от 55 до 100). В частности, ароматические углеводороды [40] в первую очередь сорбируются и прочнее удерживаются сорбентом, чем алифатические. [c.212]


    Для некоторых красителей, особенно синего и зеленого цветов, условия осернения могут быть так стандартизованы, что в идентичных условиях проведения опыта достигается полная воспроизводимость результатов. Полученный краситель красит в один и тот же тон как из свежей, так и из стоявшей ванны, а также из истощенной ванны. На этом основании Фирц-Давид разработал схему очистки этих красителей, по которой примеси удаляются последовательной исчерпывающей экстракцией разбавленной соляной кислотой, разбавленным аммиаком, водой, спиртом и эфиром. Несколько синих и зеленых красителей, например Пирогеновое индиго, Иммедиалевый чисто-синий, Иммедиалевый индон и Гидроновый синий были очищены таким способом, но молекулярные веса их не были определены и однородность соединений не была проверена ни хромотографическим, ни иным путем. Несмотря на неизбежное несовершенство такого способа, Фирц-Давиду удалось приписать этим красителям строение, в значительной мере объясняющее их свойства. Многие сернистые красители (например. Сернистый черный) не поддаются очистке по способу Фирца-Давида, так как на определенной стадии очистки они образуют коллоидный раствор и больше не извлекаются. Фирц-Давид считал, что в основном его метод применим только к синим и зеленым сернистым красителям. [c.1240]

    Основные трудности при исследовании минсрализата связаны с тем, что он представляет собой сильнокислую жидкость, нередко окрашенную в желтоватый цвет, и содержит в большом количестве железо, намного превосходящее количество искомых элементов и мешающее их определению. Поэтому проведение многих реакций в минерализате часто невозможно без предварительного выделения искомых элементов. Для выделения элементов из минерализата использованы экстракция и реэкстракция как наиболее эффективные способы выделения и разделения. [c.5]


Смотреть страницы где упоминается термин Основные способы проведения экстракции: [c.33]    [c.596]    [c.22]   
Смотреть главы в:

Процессы и аппараты химической технологии Часть 2 -> Основные способы проведения экстракции

Процессы и аппараты химической технологии Часть 2 -> Основные способы проведения экстракции




ПОИСК





Смотрите так же термины и статьи:

Экстракция способы



© 2024 chem21.info Реклама на сайте