Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика общие законы

    Первый закон термодинамики. Первый закон имеет несколько различных формулировок. Его можно определить как закон сохранения энергии, из которого следует, что в любой изолированной системе, общий запас энергии сохраняется постоянным. Отсюда вытекает важная формулировка первого закона термодинамики. [c.149]


    Вывод о недостаточности первого начала термодинамики для определения направления и предела протекания процессов привел к установлению второго начала термодинамики. Второе начало термодинамики, так же как и первое начало, является постулатом, обобщением опытных данных. Доказательством второго начала может служить то, что все выводы, вытекающие из него, до сих пор всегда находили подтверждение на опыте. В 1824 г. С. Карно установил основные положения второго начала термодинамики. В середине XIX в. Клаузиус, Томсон и Максвелл показали, что второе начало термодинамики — один из наиболее общих законов природы .  [c.109]

    Для объяснения свойств растворов на разных этапах развития науки были предложены различные теории растворов. Вначале самостоятельно развивались химическая и физическая теории растворов. Первая основывалась на изучении закономерностей химических процессов, протекающих в растворах, вторая — на исследовании физических свойств растворов на базе общих законов термодинамики. Химическая точка зрения наиболее последовательно развивалась Д. И. Менделеевым, физическая — Я. X. Вант-Гоффом, С. Аррениусом и др. В дальнейшем, в результате работ И. А. Каблукова, В. А. Кистяковского и других ученых успешно стала развиваться физико-химическая теория растворов, впитавшая в себя достижения химической и физической теории растворов. [c.208]

    Химическая термодинамика. В этом разделе на основе законов общей термодинамики излагаются законы химического равновесия и учение о фазовых равновесиях, которое обычно называют правилом фаз. Частью химической термодинамики является термохимия, в которой рассматриваются тепловые эффекты химических реакций. [c.19]

    На нулевом (общем) законе термодинамики основано измерение температуры с помощью термометра. В учение о теплоте температура вводится через понятия теплового или термодинамического равновесия. Эти понятия трудно поддаются логическому определению. К ним приходят в результате рассмотрения конкретных примеров и последующего обобщения. [c.21]

    Различают общую (физическую), техническую и химическую термодинамику, Общая термодинамика изучает законы термодинамики и их приложения к свойствам веществ в твердом, жидком и газообразном состояниях, к электрическим и магнитным явлениям, к излучению. В технической термодинамике общие законы используются для характеристики процессов взаимного превращения теплоты и работы. Химическая термодинамика рассматривает следующие основные проблемы  [c.47]


    Химические реакции сопровождаются, как правило, тепловыми изменениями, т. е. выделением или поглощением теплоты. Изучением тепловых изменений, связанных с химическими реакциями, занимается термохимия. Термохимия пользуется установленными химической термодинамикой общими законами превращения энергии. [c.43]

    Второе начало термодинамики — это общий закон природы, действие которого простирается на самые разные системы. Второе начало термодинамики носит статистический характер и применимо только к системам из большого числа частиц, т. е. таким, поведение которых подчиняется законам статистики. Второе начало получает более полное физическое разъяснение в статистической термодинамике. [c.109]

    Правило фаз. Одним из самых общих законов физической химии является закон равновесия фаз, называемый правилом фаз. Правило фаз основывается на втором законе термодинамики и относится к системам, находящимся в равновесии. [c.244]

    Рассмотрим кратко сущность перечисленных выше направлений в развитии термодинамики. Общая термодинамика развивает теоретические основы протекания равновесных процессов, формулирует законы и создает методы для изучения различных физических явлений без детализации механизма их протекания. [c.5]

    Согласно классической теории ФП [14, 15] причиной возникновения того или иного упорядочения является изменение соотношения между вкладами внутренней энергии Е и энтропии 5 в свободную энергию Р=Е-Т8. Основным принципом статистической физики, вытекающим нз второго закона термодинамики, является минимальность таких термодинамических потенциалов, как свободная энергия, в состоянии равновесия. Поэтому в равновесии Р минимально относительно всех внутренних параметров системы, в частности относительно степени упорядоченности. Энтропия характеризует величину беспорядка, хаотичности в системе, и при переходе от неупорядоченной структуры к упорядоченной она уменьшается. В то же время энергия составляющих систему частиц минимальна при их упорядоченном, а не хаотическом расположении. Таким образом, в свободной энергии вклад слагаемого с внутренней энергией описывает тенденцию к упорядоченности, а энтропийного слагаемого -к неупорядоченности, и выбор системой равновесного состояния с минимальным / определяется конкуренцией между вкладами. С понижением температуры степень хаотичности и энтропия уменьшаются, вклад энтропийного слагаемого стремится к нулю, и свободная энергия определяется внутренне энергией Е. Поэтому при низких температурах все равновесные системы должны быть так или иначе упорядочены. Таким образом, необходимость тех или иных ФП упорядочения при понижении температуры следует нз общих законов термодинамики. Современной теории ФП предшествовала теория Л.Д Ландау. Основные положения теории Ландау [13]  [c.22]

    Допустим, что некоторое тело К (рис. П.6) объемом и внутренней энергией вводится из окружающей среды в некоторую термодинамическую систему М, давление в которой равно Р, а внутренняя энергия — У. В результате внутренняя энергия системы М возрастает на поскольку с введенным телом К вводится и его энергия. Но, кроме того, при перемещении этого тела из окружающей среды в термодинамическую систему, окружающая среда, преодолевая давление системы, равное Р, совершает работу по введению тела, равную которая воспринимается системой М как дополнительная энергия, поступающая с телом К. Следовательно, согласно первому закону термодинамики, общий прирост энергии рассматриваемой термодинамической системы М при введении в нее некоторого тела К, равен сумме U -Ь [c.63]

    Вопрос об изменении энергии в химических реакциях также относится к области приложений первого закона термодинамики, так как является особым случаем общего закона сохранения энергии, а именно возможности изменения внутренней энергии системы. Последнюю понимают как общую энергию системы, исключая кинетическую энергию системы в целом (не имеет значения, где идет газовая химическая реакция — в лабораторном сосуде или в аэростате) и ее потенциальную энергию, связанную с внешним полем (не имеет значения, происходит реакция в подвале дома или на 4-м этаже дома, хотя в последнем случае воздействие гравитационного поля будет более сильным). Внутренняя энергия — это сумма энергий отдельных атомов и молекул, из которых состоит система, включая потенциальную энергию, связанную с межмолекулярным взаимодействием. [c.217]

    Термодинамика включает следующие разделы общую или физическую термодинамику, изучающую наиболее общие законы превращения энергии техническую термодинамику, рассматривающую взаимопревращения теплоты и механической работы в тепловых машинах химическую термодинамику, предметом которой являются превращения различных видов энергии при химических реакциях, процессах растворения, испарения, кристаллизации, адсорбции. [c.47]


    Распространение этого метода на изучение химических реакций и процессов с учетом их специфики привело к выделению самостоятельного раздела данной дисциплины, получившего название химической термодинамики. В результате химических реакций, сопровождающих и определяющих течение химических процессов, происходят глубокие изменения физико-химических свойств взаимодействующих веществ при одновременном выделении либо поглощении тепла. С целью оптимального осуществления хода химического процесса необходимо знать общие законы, определяющие превращения энергии при химическом взаимодействии веществ. [c.6]

    Термодинамика базируется на нескольких постулатах, основными из которых являются первый и второй законы. Эти постулаты нельзя вывести из более общих законов. Однако их можно считать твердо установленными фундаментальными законами природы, поскольку многовековой житейский, производственный и научный опыт человечества показал, что процессы, противоречащие этим постулатам или основанным на них законам, никогда не наблюдаются. [c.18]

    Если в состоянии равновесия при > 2 ввести хлорид натрия в левую часть системы, то равновесие нарушится и ионы Ка и СГ в соответствии со вторым законом термодинамики будут диффундировать в правую часть системы, т. е. от меньшей концентрации к большей. Такой самопроизвольный перенос вещества от меньшей концентрации к большей в биологических объектах неправомерно трактуется идеалистами как неподчинение биологических объектов второму закону термодинамики. Отсюда делается более широкое обобщение о неподчинении биологических объектов законам неорганической неживой природы и вытекающий отсюда теологический вывод о том, что биологические объекты не подчиняются общим законам материального мира. [c.407]

    Химическая термодинамика. На основе общих законов термодинамика изучает законы химического равновесия. Частью химической термодинамики является термохимия, в которой рассматриваются тепловые эффекты химических реакций. [c.9]

    Классификация термодинамических параметров основана на их объединении в определенные группы по тем общим признакам, которые обеспечивают понимание и трактовку общих законов термодинамики. [c.7]

    Первый закон термодинамики — частный случай общего закона сохранения энергии в применении к термическим явлениям. При рассмотрении балансов термических процессов необходимо [c.11]

    Возможность перехода вещества из одного фазового состояния в другое (из одной фазы в другую) определяется одним из общих законов химии и физики — правилом фаз Гиббса. Правило фаз Гиббса применимо к равновесным системам и является выражением второго закона термодинамики в приложении к фазовым равновесиям. [c.13]

    В общей термодинамике излагаются теоретические основы термодинамики, ее законы и их приложение преимущественно к физическим явлениям (к свойствам твердых, жидких и газообразных тел, к электрическим и магнитным явлениям, излучению и т. д.). [c.12]

    Химическая термодинамика — область физической химии, в которой на основе законов общей термодинамики изучаются тепловые балансы химических и физических процессов в различных условиях, устанавливается возможность и направление течения процесса. С помощью химической термодинамики выводятся законы химического и фазового равновесия и его смещения при изменении различных параметров (температуры, давления, концентраций). [c.5]

    Методы термодинамики используются в самых различных областях знаний. В зависимости от того, в какой области рассматриваются превращения энергии, различают общую, техническую и химическую термодинамику. Если законы общей термодинамики применяются к химическим реакциям, агрегатным превращениям и различным физикохимическим явлениям, то говорят о химической термодинамике. Эта наука вооружает нас методами предсказания устойчивости веществ в заданных условиях и способности нх реагировать в том или ином направлении она дает способы расчета тепловых эффектов и глубины [c.65]

    Химия, изучающая вещество и законы его превращения, охватывает огромную область человеческих знаний. Настоящий учебник рассматривает наиболее общие законы химии и химические процессы квантово-механическую модель атомов и периодический закон элементов Д. И. Менделеева, модели химической связи в молекулах и твердых телах, элементы химической термодинамики, законы химической кинетики, химические процессы в растворах, электрохимические процессы. В учебнике также обсуждаются некоторые области применения законов химии, химических процессов и продуктов химической промышленности. [c.431]

    Второе и третье правила оказались общими законами термодинамики для любых растворов. Рассмотрим тот случай, когда пар можно рассматривать как смесь идеальных газов. Относительно свойств жидкого илн твердого растворов не делается никаких допущений. Для бинарного жидкого раствора при постоянной температуре уравнение Гиббса — Дюгема (ж) + Х2а >-2 (ж) = О можно представить в виде [c.115]

    Первый закон термодинамики является частным случаем общего закона сохранения энергии в применении к тепловым (термическим) явлениям. При рассмотрении балансов термических процессов необходимо учитывать работу, возникающую вследствие изменения объема системы. [c.14]

    В отличие от начал термодинамики эти положения не являются общими законами природы. Это скорее перечень постулатов, при выполнении которых к опытным данным можно применять новые термодинамические методы, разработанные для сложных явлений переноса. Однако есть множество необратимых процессов и среди них необратимые химические реакции, к которым неприменима (или для них практически бесполезна) рассматриваемая ниже теория. Все же термодинамика необратимых процессов сейчас утвердилась как самостоятельный и активно развивающийся раздел науки. [c.283]

    При термодинамическом описании предполагают, что система находится в относительном покое ( кин = 0) и воздействие внешних полей пренебрежимо мало ( пот = 0). Тогда полная энергия системы определяется запасом ее внутренней энергии Е=0). Последняя складывается из кинетической энергии поступательного и вращательного молекулярного движения, энергии притяжения и отталкивания частиц, энергии электронного возбуждения, энергии межъядерного и внутриядерного взаимодействия и т. п. Количественный учет всех составляющих внутренней энергии невозможен, но для термодинамического анализа систем в этом нет необходимости, так как достаточно знать лишь изменение внутренней энергии при переходе из одного состояния в другое, а не ее абсолютные величины в этих состояниях. В соответствии с законом сохранения энергии, выражающим первое начало термодинамики, общий запас внутренней энергии системы остается постоянным, если отсутствует тепловой обмен с окружающей средой. В ходе процессов, протекающих в изолированной системе, возможно лишь перераспределение внутренней энергии между отдельными составляющими системы. [c.203]

    Если система изолирована, т. е. не обменивается энергией с окружающей средой, то йи = 0 и энергия постоянна. Таким образом, первый закон термодинамики — это приложение более общего закона сохранения энергии к термодинамическим процессам. Энергия не исчезает и не появляется она только переходит из одной формы в другую. [c.13]

    Химическая термодинамика использует положения и выводы общей термодинамики. Первый закон (начало) термодинамики непосредственно связан с законом сохранения энергии, который был сформулирован в самом общем виде М. В. Ломоносовым (1748 г.). В середине XIX в. дальнейшее развитие данный закон получил в работах Р. Майера, Г. Гельмгольца, Д. Джоуля. [c.72]

    Термодинамика — наука, которая изучает общие законы взаимного превращения энергии из одной формы в другую. В химической термодинамике эти законы применяются к рассмотрению химических и физико-химических процессов. В частности, химическая. термодинамика количественно определяет тепловые эффекты различных процессов (химических реакций, растворения, плавления и т. п.) выясняет принципиальную возможность самопроизвольного течения химических реакций и условия, при которых химические реакции могут находиться в состоянии равновесия. [c.33]

    Термодинамика химическая — изучает химические реакции и фазовые переходы (растворение, испарение и кристаллизация чистых веществ и растворов и обратные им процессы), а также переход энергии из одной формы в другую и от одной части системы к другой в различных химических процессах и т. д. Важнейшими разделами этой науки являются термохимия, учение о химических и фазовых равновесиях, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. В основе Т. х. лежат общие положения и выводы термодинамики (первый закон термодинамики служит основой термохимии, второй закон термодинамики лежит в основе всего учения о равновесиях и др.). [c.135]

    Понятие о химической термодинамике. К изучению химических процессов следует подходить через ряд последовательных приближений. На первом этапе целесообразно рассмотреть лишь начальное и конечное состояния взаимодействующих веществ, не учитывая путь, по которому протекает процесс, и развитие процесса во времени. В этом и заключается термодинамический подход. Химическая термодинамика использует законы общей термодинамики для исследования химических и физико-химических процессов. Она включает термохимию, учение.  [c.121]

    Для возникновения необратимого потока вновь образуемой поверхности при разрушении металла (раскрытие трещины или диспергирование) согласно общим законам термодинамики необратимых процессов необходимо существование термодинамической (обобщенной) силы, т. е. поддерживаемого градиента (или разности) значений термодинамической переменной состояния с обратным знаком, в данном случае — разности ее значений в начальном и конечном состояниях (— Аа), препятствующей обратному процессу. [c.132]

    При этом будут рассмотрены лишь те вопросы, которые имеют отношение к теории горения. В 2 будут сформулированы общие законы термодинамики, в 3 изложены основные положения статистической механики идеальных газов. В 4 устанавливаются условия химического равновесия при фазовых переходах и химических реакциях в газах (реальных и идеальных) и в конденсированных фазах (реальных и идеальных). В этом же параграфе указаны методы расчета состава равновесных смесей. В 5 вводится понятие о теплоте реакции и описаны методы определения этой величины, а также обсуждается расчет адиабатической температуры пламени. В последнем параграфе ( 6), посвященном конденсированным системам, выводится правило фаз и обсуждаются зависимости давления пара и точки кипения от концентрации, также осмотическое давление и другие вопросы, [c.434]

    ХИМЙЧЕСКАЯ ТЕРМОДИНАМИКА, раздел физ. химии, посвященный изучению макроскопич. хим. систем (газообразные, жидкие и твердые в-ва, р-ры и др.) и процессов (р-ции, фазовые превращения и др.) на основе общих законов взаимопревращения теплоты, разл. видов работы и энергии. [c.236]

    Химическая термодинамика применяет законы общей термодинамики для изучения химических явлений. Химтеская термодг1намика позволяет вычислить тепловой эффект реакции, а также предсказать, осуществима ди данная реакцга и до какого предела она можсп протекать. Для этого необходимы данные о термодинамических параметрах всех компонентов только в начальном и конечном состоянии системы. [c.12]

    Физическая (общая) термодинамика носит теоретический характер и рассматривает наиболее общие законы препращеиия энергии. Техническая термодинамика изучает взаимные превращения теплоты и механической работы, происходящие в тепловых машинах. Химическая термодинамика рассматривает взаимные превращения различных форм энергии, сопровождающие химические реакции и фазовые переходы. Химическая термодинамика — один из основных способов исследования химических процессов. [c.44]

    Важнейшие задачи физической химии сводятся в самом об-ш,ем виде к следующему к изучению общих законов строения веществ, изучению условий, определяющих состояние равновесия химической системы, нахождению закономерностей, определяющих приицишгальттую возмолшость перехода из одного равновесного состояния в другое, и, наконец, к исследованию реальных процессов такого перехода, т. е. процессов химических превращений. Две из этих задач, а именно изучение равновесных состояний и общих законов, определяющих возможность перехода из одного равновесного состояния в другое,составляют предмет раздела фи ичес1 ой химии, который называется химической термодинамикой. В хшушческой термодинамике рассматриваются приложения одного из больших разделов общей физики — термодинам 1ки — к химическим явлениям. [c.6]

    Важнейшими взаимосвязанными понятиями в термодинамике являются энергия, теплота и работа. Им в 3 этой главы уделяется специальное внимание. Здесь же укажем, что сам термин термодинамика происходит от греческих слов 1Негте — теплота и (1шат1 з — сила. Поэтому перевести слово термодинамика следовало бы как наука о силах, связанных с теплотой (и вовсе не о движении теплоты). Однако в эпоху становления термодинамики в XIX в, ученые не всегда ясно представляли различие между силой и энергией . Если говорить не о переводе термина, а об определении, то термодинамика является наукой, изучаюш,ей взаимопревращения теплоты, работы и различных видов энергии — часто объединяемых под названием внутренней энергии. Устанавливаемые при этом общие законы применяются в различных разделах науки. Применения их к химии составляют химическую термодинамику, которой и посвящена настоящая книга. [c.7]

    В основе термодинамики лежат три обобщения, или принципа первый принцип термодинамики является законом сохранения энергии второй ее принцип характеризует направление всех естественных, самопроизвольно протекающих процессов менее общий третий принцип позволяет определить абсолютное значение одного из фундаментальных свойств вещества — его энтропии (см. 11.3). Эти принципы, или законы, являющиеся обобщением огромного опытного материала, могут быть выражены по-разному часто их формулируют в виде утверждения о невозможности осуществления Perpetuum mobile — вечного двигателя первого рода, в котором производимая машиной работа превышала бы количество подведенной теплоты вечного двигателя второго рода, в котором работа производилась бы за счет одного источника теплоты, и вечного двигателя третьего рода, в котором работа производилась бы за счет охлаждения источника энергии до абсолютного нуля температуры. [c.78]

    В 1876 г. американский физико-химик Дж. У. Гиббс установил простой закон, который служит средством классификации всех систем, находящихся в состоянии истинного равновесия. Этот общий закон, являющийся следствием второго начала термодинамики, называется правилом фаз Гиббса. Для его понимания необходимо рассмотреть понятие степени свободы. Степени свободы — это независимые термодинамические параметры фаз системы (температура Т, давление р, концентрация t), находящихся в равновесии, изменение которых в определенных пределах не вызывает исчезновения одних и образования других фаз. Их число, называемое вариантностью системы, будем обозначать через /. В зависимости от числа степеней свободы различают инвариантную систему (/ = 0), моновариантную (f = 1), дивариантную (/ = 2) и т. д. Инвариантные системы могут существовать лишь при единственном сочетании р, Т и . У моновариант-ных систем можно произвольно изменять (в определенных пределах) только один параметр, не нарушая равновесия в системе (каждому значению переменного параметра отвечают строго определенные значения остальных). У дивариантных систем можно менять независимо друг от друга два параметра и т. д. [c.125]

    Понятие о химической термодинамике. К изучению химических процессов следует подходить через ряд последовательных приближений. На первом этапе целесообразно рассмотреть лишь начальное и конечное состояния взаимодействующих тел, не учитывая путь, по которому протекает процесс, и развитие процесса во времени. В этом и заключается термодинамический подход. Химическая термодинамика использует законы общей термодинамики для исследования химических и физико-химических процессов. Она включает термохимию, учение о химическом равеновесии, и<идких и твердых растворах, фазовых переходах и процессах на границе раздела фаз. [c.202]


Смотреть страницы где упоминается термин Термодинамика общие законы: [c.33]    [c.19]    [c.71]    [c.123]    [c.18]   
Понятия и основы термодинамики (1970) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Закон термодинамики

Общая формулировка второго закона термодинамики

Общие законы равновесия. Термодинамика

Общие понятия. Первый закон термодинамики и его приложение



© 2025 chem21.info Реклама на сайте