Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидродинамические модели структуры потоков

    Разработка математической модели теплообменного аппарата осложняется спецификой конструкционного оформления и назначения, а именно родом теплоносителей, способом интенсификации процесса теплообмена, гидродинамическим режимом потоков, характером передачи тепла, конфигурацией и компоновкой поверхностей теплообмена, количеством ходов и направлением потоков тепло- и хладагентов, материалом аппарата и т. д. В основе методов расчета теплообменников лежит использование соответствующей модели структуры потока (см. табл. 2.1) с учетом источника тепла, описываемого уравнением теплопередачи [c.92]


    Модели структуры потоков являются основой расчета гидродинамических процессов в аппаратах, выполняющих функции смесителей потоков различных количеств и составов. Для стационарных условий математическое описание смесителя емкостного тина состоит из уравнений материального и теплового балансов  [c.125]

    МИКИ двухфазных систем. Дано теоретическое обоснование основной количественной характеристике двухфазной системы — фактору гидродинамического состояния двухфазной системы. Введено математическое описание структуры потоков, возникающих в промышленных аппаратах, как основы построения математических моделей процессов массопередачи. Даны количественные оценки неравномерности распределения элементов потока по времени пребывания в аппаратах, а также расчет параметров математических моделей структуры потоков. [c.4]

    Гидродинамические модели структуры потоков [c.253]

Рис. 5.22. Гидродинамическая модель структуры потока дисперсного материала в фонтанирующем слое Рис. 5.22. <a href="/info/1537006">Гидродинамическая модель структуры потока</a> <a href="/info/145097">дисперсного материала</a> в фонтанирующем слое
    В общем случае при разработке математического описания химического реактора необходимо учитывать термокинетические, диффузионные и химические эффекты. Соответственно в уравнение гидродинамической модели структуры потоков включаются выражения, характеризующие источники вещества и тепла. Собственно источником вещества является химическое превращение, и его интенсивность будет пропорциональна скорости образования продуктов реакции [c.96]

    Иерархия системного анализа процесса предполагает следующие уровни 1) перенос адсорбата в ядро потока описывается гидродинамическими моделями структуры потоков 2) массоперенос к поверхности зерна описывается моделями массопередачи  [c.21]

    Возможны два подхода к оценке влияния структуры потоков на время пребывания пара и жидкости на ступени разделения. Во-первых, с помощью функций распределения времени пребывания элементов потока в аппарате. В этом случае необходимо иметь модельную или экспериментальную кривую отклика на импульсное возмущение. Такой подход предполагает наличие экспериментального объекта и в большей степени пригоден к анализу действующих процессов. Во-вторых, использование модельных представлений структуры потоков жидкости и пара на ступени разделения. В этом случае гидродинамические условия описываются типовыми моделями структуры потоков в виде систем конечных или дифференциальных уравнений, а степень достижения равновесных условий оценивается влиянием структуры потоков на кинетику процесса. [c.87]


    В табл. 2.8 приведены результаты расчета показателей процесса выращивания биомассы для некоторых гидродинамических моделей структуры потоков в биореакторе. [c.76]

    При анализе реальной гидродинамической структуры потоков часто используются более сложные модели, построенные на основе приведенных в табл. 4.4. К таким моделям относятся комбинированные, образованные путем соединения ячеек полного перемешивания, вытеснения, застойных зон, байпасных и рециркуляционных потоков. Определение параметров моделей структуры потоков и решения в виде передаточных функций подробно изложено в монографии [41]. [c.121]

    Массообменные процессы. Эта группа процессов отличается значительной сложностью по сравнению с предыдущими и соответственно большим числом моделей для их расчета. Массообменный процесс в большинстве случаев (ректификация, экстракция, абсорбция, кристаллизация) является системой, включающей как необходимые другие аппараты (например, теплообменники, конденсаторы, декантаторы и т. п.). Поэтому и математические модели как для описания, так и для алгоритмизации являются более сложными. Рассмотренные ранее модели структуры потоков и теплообмена могут использоваться при описании массообменных процессов на ступени разделения (тарельчатые колонны) и в слое насадки (насадочные колонны). При описании массообменного процесса уравнения гидродинамической структуры потоков фаз (см. табл. 4.4) должны быть дополнены членом, учитывающим массоперенос компонента через поверхность раздела фаз, например, в матричном выражении  [c.129]

    Трудность применения моделей структуры потоков состоит в том, что их параметры определяются по экспериментальным данным, в частности, по кривым отклика. А это предполагает наличие живой модели, что при решении проектных задач часта не представляется возможным. В связи с этим целесообразна при появлении новых конструкций массообменных элементов наряду с оценкой их эффективности по массопередаче устанавливать применимость типовых гидродинамических моделей в зависимости от нагрузок по фазам. Отсутствие таких данных затрудняет выдачу точных результатов цо гидродинамике, и поэтому подчас становится невозможным получить оценки применения различных моделей. Трудно получить и количественные оценки погрешностей от применения тех или иных моделей. Распространенным способом оценки гидродинамических моделей является расчет по предельным моделям, когда можно сделать вывод, что действительные значения находятся между граничными значениями. [c.317]

    Многие процессы химической технологии характеризуются сложностью и недостаточной изученностью гидродинамических и физико-химических явлений, сопровождающих процесс. В таких случаях говорят, что процессы плохо обусловлены для математического описания. При этом технологические расчеты базируются на приближенных модельных представлениях о внутренней структуре гидродинамической и физико-химической обстановки в промышленном аппарате (используются модели структуры потоков, модели химической и диффузионной кинетики, модели термодинамического равновесия и т. п.). Модельные принципы описания ФХС приводят к необходимости вместо энергетических диаграмм строить так называемые модельные диаграммы, являющиеся топологическим (диаграммным) представлением описаний сложных физико-химических процессов, протекающих в технологической аппаратуре. Характерным примером последних могут служить модели структуры потоков в аппаратах совместно с механизмами источников и стоков субстанций. [c.23]

    Использование рассмотренного выше математического описания при проектировании снимает проблему масштабного перехода, поскольку кинетическая модель процесса ректификации (на первом уровне иерархии) инвариантна относительно размера аппарата, а изменение эффективности контактного устройства обусловлено изменением гидродинамической обстановки на контактном устройстве, что количественно описывается уравнениями деформации параметров комбинированной модели структуры потока жидкости. [c.148]

    Комбинированные модели структуры потоков. Сложность реальной гидродинамической обстановки в промышленных аппаратах приводит к необходимости построения на основе рассмотренных выше простейших моделей более сложных топологических структур — структур потоков комбинированного типа. При по- [c.116]

    Топологическая структура (2.69) представляет развернутый (детализированный) 8/-элемент в связных диаграммах моделей структуры потоков. Последний фрагмент связной диаграммы системы химических реакций непосредственно стыкуется с диаграммами гидродинамической структуры потоков в аппаратах при моделировании физико-химических систем. Пример полной сигнал-связной диаграммы процесса химического превращения в реакторе идеального вытеснения приведен на рис. 2.12. [c.142]


    Исходя из блочного представления математической модели элемента технологической схемы, описание явлений, характеризующих перенос и распределение субстанции по координатам и по времени и базирующихся на фундаментальных законах гидромеханики многокомпонентных многофазных систем, составляет основу будущей модели. Учет реального распределения температур, концентраций компонентов и связанных с ними свойств, например плотности, вязкости и т. д., по пространственным координатам аппарата и во времени позволяет оценивать степень достижения равновесности тепломассопереноса, химического превращения, т. е. эффективность конкретного аппарата. Описание гидродинамической структуры потоков основано на модельных представлениях о гидродинамической обстановке в аппарате, использующих ряд идеализированных типовых моделей. Аппарат такого представления достаточно развит для однофазных потоков, разработаны и методы идентификации параметров отдельных моделей применительно к реальным условиям протекания процесса. Математическое описание типовых моделей структуры потоков приведено в табл. 2.1. [c.84]

    Основой для рассмотрения гидродинамических закономерностей процесса в технологических аппаратах являются законы классической механики. Однако в целом ряде практически важных случаев сложность конструктивного оформления аппаратов, фи-зико-химические особенности используемых сред не позволяют непосредственно применять уравнения гидромеханики для анализа и моделирования гидродинамической составляющей процесса. В этих условиях наиболее эффективно использование формализованных представлений о движении частиц потока в аппарате в виде математических моделей структуры потоков [7]. Основу для выбора гидродинамической модели (идеального смешения, идеального вытеснения, диффузионной, ячеечной, комбинированной п т. д.) составляют числовые характеристики распределения элементов потока по времени пребывания или функции распределения. [c.66]

    Сопоставьте идеализированные модели структуры потоков МИВ и МИС. Каков вид кривых отклика для этих моделей Назовите примеры аппаратов, в которых гидродинамическая структура потоков близка к МИВ и МИС. [c.92]

    Охарактеризуйте ячеечную и диффузионную модели структуры потоков. При каких условиях с помощью этих моделей можно принимать, что тот или иной аппарат близок по гидродинамической структуре к МИВ или МИС  [c.92]

    Модели структуры потока (гидродинамические модели) математически записываются в виде дифференциальных уравнений, которые выражают связь между наиболее характерными параметрами процесса. Для химико-технологических объектов большей частью эту связь имеет смысл находить, исходя из анализа явлений перемещения и распределения вещества в данном потоке. Поэтому универсальным видом гидродинамической математической модели является уравнение, характеризующее изменение концентрации вещества в потоке, которое обусловливается только движением. Поскольку в рассматриваемом элементарном процессе перемещения веществ изменение концентрации вызывается одними гидродинамическими факторами, то при разработке гидродинамических моделей принимается условие, что скорость химической реакции ио = 0. [c.94]

    В качестве гидродинамических параметров структур потоков вместо критериев Рет могут использоваться числа секций полного перемешивания по газу и жидкости, а также коэффициенты рециркуляции газа и жидкости в зависимости от рассматриваемой схемы взаимодействия потоков и принятой модели гидродинамической структуры потоков. [c.193]

    Вытекающая из технологической сущности процесса экстракции общность требований к определенной организации потоков контактирующих при массообмене фаз, предопределяет тождественность требований к гидродинамическим условиям проведения процесса в разных аппаратах. Именно эта тождественность обусловила значительное родство моделей структуры потоков у экстракторов различных типов, особенно у интенсифицированных подводом внешней энергии экстракторов пульсационных, вибрационных, роторно-дисковых и т. д. Возможное различие гидродинами- [c.372]

    Для расчета параметров типовых моделей структуры потоков, применяемых при описании гидродинамической обстановки в экстре ракторах, используют уравнения связи. [c.380]

    Из рассмотрения различных моделей экстрагирования можно сделать вывод, что в их основе лежат гидродинамические модели структуры двух- или многофазного потока (см. выше). По характеру течения различают также модели внешнего обтекания (внешняя задача гидродинамики), струйную, фильтрационные (смешанная задача) и другие. [c.95]

    Наряду с приведенной моделью для описания работы колон ных экстракторов в зависимости от гидродинамического режима движения потоков в аппарате могут быть использованы и другие модели структур потоков, которые имеют более сложный вид. [c.168]

    В принципе возможен следующий путь масштабирования колонных аппаратов. На основе физической модели структуры потоков в аппарате данной (конструкции и результатов зкаперименталь-ного исследования его ла(бораторного или укрупненного образца получают зависимости для оценки Еп в промышленном аппарате. Расчет аппарата с учетом кинетических (коэффициенты массопередачи, константы скорости реакции) и найденных гидродинамических ( п) параметров процесса является достаточно надежным. [c.253]

    В случае тарельчатых (полочных) аппаратов принимаются модели структуры потоков для каждой ступени и для межтарельча-того пространства, а для насадочных аппаратов модель принимается по всей его длине (высоте). Рассмотрим в качестве примера связь между гидродинамической структурой потоков и эффективностью в тарельчатых ректификационных колоннах. Для ректификационной колонны с произвольным количеством вводов питания и боковых отборов, имеющей N тарелок и снабженной кипятильником и дефлегматором, можно записать следующую систему уравнений (рис. 4.10). [c.129]

    При расчете разделительной способности тарелки в целом необходимо учитывать структуру движения жидкости на тарелке, а также характер распределения пара по площади барботажа. Рассмотренные методики позволяют вычислять локальные характеристики массопереноса, которые могут быть распространены на весь массообменный объем путел принятия соответствующей модели структуры потоков. Такой подход позволяет рассчитывать разделительную способность тарелок со сложными гидродинамическими структурами, включая байпаспрование, каналообразование, застойные зоны и т. д. Локальные же характеристики определяются составами пара и жидкости в данной точке, физико-химическими свойствами разделяемой смеси и гидродинамической обстановкой в элементарном объеме. [c.352]

    Формализованная процедура формирования связных диаграмм моделей структуры потоков на основе кодовых диаграмм (см. с. 20) предусматривает три этапа представление элементами диаграммной техники конкретных видов потоков субстанций конкретизация структур слияния, отражающих модель гидродинамической обстановки в системе (законы смешения, характер совмещенности процессов в локальной точке пространства, учет неоднородностей типа байпасов, рециклов, застойных зон и т. п.), расшифровка (декодирование) кодовой диаграммы и построение связной диаграммы на основе двух предыдущих этапов. [c.104]

    Если принятые допущения не вносят существенных отклонений от реального процесса, то рекомендуется применять типовые гидродинамические модели или их комбинации, которые позволяют описывать гидродинамические режимы сравнительно простыми уравненп-ями, полученными для идеальных структур или реальных потоков с известными упрощениями. Методика составления типовых гидродинамических моделей движущихся потоков, в которых обычно происходят химические превращения, подробно рассматривается в гл. V. [c.61]

    Гидродинамическая обстановка в экстракторе описывается с помощью моделей структур потоков, некоторые из которых были рассмотрены выше. Влияние структуры потоков на ход процесса экстракции выражается с помощью безразмерной величины е, определяющей долю непроэкстрагированного вещества  [c.575]

    Анализ и синтез моделей структуры потоков для аппаратов различных типов. Этот аспект моделирования процессов экстракции сравнительно недавно оформился в самосгоятельное направление в связи с тем влиянием, которое оказывают продольное перемешивание и структурная неоднородность гидродинамической обстановки в аппаратах на эффективность процессов экстракционного извлечения и разделения. Особое место занимают вопросы определения параметров моделей структуры потоков с учетом специфики экстракционной аппаратуры. [c.365]


Смотреть страницы где упоминается термин Гидродинамические модели структуры потоков: [c.136]    [c.250]    [c.68]    [c.234]    [c.43]    [c.153]    [c.329]    [c.329]    [c.269]   
Смотреть главы в:

Массообменные процессы химической технологии -> Гидродинамические модели структуры потоков




ПОИСК





Смотрите так же термины и статьи:

Идеализированные модели гидродинамической структуры потоков

Математические модели гидродинамических структур потоков

Математическое описание процессов перемещения веществ (гидродинамические модели) Модели структуры потоков

Михеева Процессы промышленной экстракции в системах жидкость — жидкость Применение методов математического моделирования для анализа структуры потоков и оценки гидродинамической обстановки в экстракторах. Выбор типа модели

Модели гидродинамического потока

Модели гидродинамической структуры неидеальных потоков

Основные типы моделей гидродинамической структуры потоков в аппаратах химической технологии

Параметры математических моделей гидродинамических структур потоков

Структура потоков



© 2025 chem21.info Реклама на сайте