Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические диаграммы процесса

    Основные закономерности процесса ректификации могут быть рассмотрены в различных аспектах. В одном из них главное место занимает теория ректификационных аппаратов, позволяющая находить их оптимальные конструкции. В другом — возникает вопрос о закономерностях ректификаций, определяемых в большей степени не конструкцией колонн, а физико-химической природой разделяемых смесей. Если учесть, что в промышленной практике разделения многокомпонентных смесей азеотропные смеси со сложными по структуре диаграммами фазового равновесия занимают значительное место, становится ясно, что исследование физико-химических сторон процесса ректификации имеет принципиальное не только [c.130]


    Между диаграммами растворимости и плавкости нет принципиальной разницы, так как физико-химическая сущность процессов растворения и плавления одинакова — переход вещества из твердого состояния в жидкое. Когда давление мало влияет на состояние системы или давление пара ее компонентов пренебрежимо мало, его влияние не рассматривается. Для этих случаев диаграммы плавкости или растворимости называют диаграммами состояния конденсированных систем. [c.128]

    ФИЗИКО-ХИМИЧЕСКИЕ ДИАГРАММЫ ПРОЦЕССА [c.387]

Рис. 6.3. Диаграмма связи физико-химических явлений процесса отмывки для г-го слоя гранулы ионита Рис. 6.3. Диаграмма <a href="/info/326106">связи физико-химических</a> <a href="/info/655193">явлений процесса</a> отмывки для г-го <a href="/info/1163499">слоя гранулы</a> ионита
    Физико-химическая диаграмма системы, находящейся при постоянной температуре, называется изотермической. Изотерма растворимости позволяет производить расчеты различных процессов (испарение, изотермическая кристаллизация), [c.106]

    При рассмотрении диаграммы видно также, что при сравнении коррозионно-усталостной прочности стали, циклически нагружаемой с различной частотой при весьма большом сроке ее службы, можно-ожидать меньшей прочности при высоких частотах. Этот вывод, противоречащий установившимся представлениям о влиянии частоты, требует еще экспериментальной проверки на других марках стали, при других видах нагружения и в других средах, однако он не противоречит физико-химической сущности процесса, так как увеличен ние частоты увеличивает активацию металла в электрохимическом процессе коррозии и содействует более интенсивному разрушению продуктов коррозии, которые могут пассивировать металл. [c.169]

    В настоящее время правильная разработка химических основ технологического процесса при производстве солей совершенно невозможна без применения физико-химических диаграмм. [c.7]

    Физико-химические основы процесса. Получение сульфата калия основано на свойствах диаграммы растворимости четырехкомпонентной водно-солевой системы К , II СГ, 804, НгО [2, т. П-1]. Технология процесса взаимодействия суль- [c.86]

    К числу физико-химических диаграмм состав — свойство относятся и диаграммы фазовых превращений. Особенно часто пользуются этими диаграммами для решения вопросов, связанных с важнейшими операциями солевой технологии — с растворением и кристаллизацией солей из водных растворов. Выбор рациональных методов переработки сложных солевых систем (в частности, нри производстве удобрений), оптимальных условий осуществления процессов, состава исходных растворов и определение выхода продуктов значительно облегчаются при использовании равновесных диаграмм растворимости солей. Анализ этих диаграмм позволяет установить и закономерности образования природных солевых залежей, а в некоторых случаях предвидеть не только их состав, но и условия залегания. [c.67]


    Диаграмма равновесия является своеобразной химической картой, которую можно сравнить с топографической или геологической. Так же как исследователю карта помогает в изучении края или полезных ископаемых, так и химическая диаграмма указывает свойства системы и направление происходящих процессов. Превращения веществ, происходящие в равновесных системах, образование новых соединений находят точное и неуклонное отражение в физико-химических диаграммах, позволяют установить природу этих веществ. [c.58]

    Методы построения равновесных физико-химических диаграмм растворимости различаются между собой главным образом способами выражения состава системы, а также применением различных координатных сеток. Подробное описание этих методов обобщено в литературе [2, 3]. Выбор того или иного метода построения диаграммы растворимости зависит прежде всего от графического изображения системы. Диаграммы, применяемые для графических расчетов и анализа технологических процессов, должны обеспечивать достаточную точность вспомогательных построений, а также практические удобства их применения и наглядность изображений. [c.8]

    С точки зрения физико-химического анализа процесс образования твердых растворов замещения, например простого вещества В в А и А в В, подчиняется весьма общим закономерностям, причем электронное строение А и В отражается на ширине области гомогенности и на общем виде диаграммы состояния (см. IV. 18 и IV. 19) независимо от того, является ли фаза металлической или полупроводниковой. Физико-химическая же теория полупроводников позволяет ожидать ряда тонкостей в их поведении, что мы рассмотрим на примере простых, веществ. [c.548]

    НИЯ информации осуществляется наиболее эффективно. При переходе от одной схемы к другой изменяются потоки продуктов. Последние выбираются исходя из максимума термодинамического (информационного) критерия эффективности, в качестве которого принимается сумма энтропий выбора для каждой колонны. Достоинством такого подхода к синтезу схем является попытка учесть вероятностный характер протекания процесса, однако используемый критерий оптимальности не отражает физико-химических свойств разделяемой смеси. Этот метод эффективен в тех случаях, когда отсутствуют ограничения, налагаемые фазовыми диаграммами, т. е. в случае разделения идеальных смесей. [c.482]

    Одним из приемов системного анализа процессов химической технологии является структурное (топологическое) представление объекта исследования. Излагаемые в монографии принцип декомпозиции сложной системы на ряд взаимосвязанных подсистем, блоков и элементов, эвристические алгоритмы перевода физикохимической информации на язык топологических структур, понятие операционной причинности эффектов и явлений, правила распределения знаков на связах элементов, формально-логичес-кие приемы совмещения эффектов различной физико-химической природы в локальном объеме аппарата, правила объединения отдельных блоков и элементов в единую связную топологическую структуру системы — все эти приемы и методы в целом составляют единую методологию построения математической модели химико-технологического процесса в виде так называемых диаграмм связи. [c.4]

Рис. 1.3. Кодовая диаграмма физико-химических процессов, протекающих в барботажном реакторе с мешалкой Рис. 1.3. Кодовая диаграмма физико-химических процессов, протекающих в <a href="/info/712945">барботажном реакторе</a> с мешалкой
    Многие процессы химической технологии характеризуются сложностью и недостаточной изученностью гидродинамических и физико-химических явлений, сопровождающих процесс. В таких случаях говорят, что процессы плохо обусловлены для математического описания. При этом технологические расчеты базируются на приближенных модельных представлениях о внутренней структуре гидродинамической и физико-химической обстановки в промышленном аппарате (используются модели структуры потоков, модели химической и диффузионной кинетики, модели термодинамического равновесия и т. п.). Модельные принципы описания ФХС приводят к необходимости вместо энергетических диаграмм строить так называемые модельные диаграммы, являющиеся топологическим (диаграммным) представлением описаний сложных физико-химических процессов, протекающих в технологической аппаратуре. Характерным примером последних могут служить модели структуры потоков в аппаратах совместно с механизмами источников и стоков субстанций. [c.23]


    При построении сигнал-связной диаграммы ФХС представляется в виде набора элементов, которые характеризуют физико-химические процессы в отдельных физических подсистемах, составляющих общую ФХС. [c.30]

    Топологическая структура (2.69) представляет развернутый (детализированный) 8/-элемент в связных диаграммах моделей структуры потоков. Последний фрагмент связной диаграммы системы химических реакций непосредственно стыкуется с диаграммами гидродинамической структуры потоков в аппаратах при моделировании физико-химических систем. Пример полной сигнал-связной диаграммы процесса химического превращения в реакторе идеального вытеснения приведен на рис. 2.12. [c.142]

    Центральным этапом этой процедуры, определяющим специфику топологического представления процессов в гетерофазных системах, является отражение в терминах диаграмм связи физико-химических явлений на границе раздела фаз, в первую очередь условий межфазного равновесия. [c.143]

    Построение детализированной связной диаграммы Е-фазы с подробным учетом всех ее физико-химических особенностей является сложной задачей из-за недостаточной изученности термодинамики поверхностных явлений [6]. Поэтому диаграммное представление процессов на границе раздела фаз в настоящей работе будет ограничено только отображением межфазных переходных потоков совместно с условиями равновесия на межфазной границе. [c.143]

    Диаграммная структура антисимметричной ячеечной модели. При описании физико-химических процессов в прямоточных и противоточных аппаратах часто используется антисимметричная ячеечная модель, в соответствии с которой гидродинамическая структура потоков в фазах моделируется различным числом ячеек смешения [15]. При этом возникает задача сопряжения единичной ячейки одной фазы с несколькими ячейками другой фазы. Реализация такого сопряжения в терминах диаграмм связи дана на рис. 2.17. Для наглядности диаграммы отдельных ячеек не раскрываются. TD-проводник используется для отражения условий равновесия компонентов на границе раздела фаз соответствующего участка аппарата. [c.158]

    Отражение условий динамического равновесия на границе раздела фаз в данном случае сводится к учету равновесного распределения вещества между фазами с матрицей коэффициентов распределения М и равенству диффузионных потоков по каждому компоненту на границе раздела со стороны каждой из фаз. Как уже упоминалось (см. с. 152), топологически эти условия реализуются в виде комбинации Т-элемента и TD-элемента с матрицей коэффициентов передачи 1V1. Физическая схема ячейки и локальная форма связной диаграммы физико-химических процессов в ней показаны на рис. 2.20. Та же связная диаграмма, но в форме диаграммной сети, представлена на рис. 2.21. [c.164]

    Таким образом, рассмотренные физико-химические предпосылки позволяют построить полную связную диаграмму процесса хемосорбции в насадочной колонне с учетом его зонной структуры (рис. 2.22). При необходимости эти локальные диаграммы могут быть развернуты в диаграммную сеть. [c.167]

    Одно из достоинств диаграммного принципа анализа ФХС состоит в возможности формализации построения полного информационного потока системы в виде блок-схем и сигнальных графов непосредственно по связной диаграмме ФХС без записи системных уравнений, что существенно снижает вероятность принятия ошибочных решений. Не менее важным является то, что построенная таким образом блок-схема моделирующего алгоритма ФХС всегда основана на естественных причинно-следственных отношениях, находящихся в полном соответствии с механизмом исследуемого физико-химического процесса, что обеспечивает, как правило, вычислительную устойчивость алгоритма. [c.204]

    Диаграмма связи диффузионных и релаксационных явлений в материале сополимера, полученная простым присоединением диаграммы связи реологической модели вязкоупругого состояния полимера к фрагменту диаграмм связи, отображающего диффузионные явления сплошной среды, представлена на рис. 4.4. Построенная диаграмма замкнута относительно преобразований энергии в ней, увязывает макроскопическое движение элементарного объема системы с физико-химическими характеристиками ее макроструктуры. Поэтому синтез уравнений системы по ее диаграмме приводит к замкнутой системе уравнений процесса набухания сополимера с учетом движения реальной сплошной среды и пере- [c.309]

    В любом процессе экстракции можно выделить три составляющие растворитель извлекаемый компонент, который в общем случае может представлять собой смесь нескольких компонентов и неизвлекаемый компонент, в общем случае также являющийся смесью нескольких компонентов. Каждая из указанных составляющих процесса описывается определенными физико-химическими характеристиками. В этой связи для расчета процесса Экстракции широко используют треугольные диаграммы. [c.297]

    За границу раздела между основной и завершающей фазами сгорания условно принят момент достижения максимума давления на индикаторной диаграмме (точка в на рис. 5.5), Сгорание в это время еще не заканчивается и средняя температура газов в цилиндре продолжает некоторое время возрастать [9]. Фронт пламени уже приближается к стенкам камеры сгорания, и скорость его распространения уменьшается за счет меньшей интенсивности турбулентности и снижения температуры в пограничных со стенкой слоях. Уменьшение скорости сгорания ведет к снижению скорости тепловыделения, поэтому повышение давления в результате сгорания в фазе догорания уже не может компенсировать его падение вследствие начавшегося рабочего хода поршня. Процессы догорания смеси в пограничных со стенкой слоях продолжаются в течение довольно длительного времени. При этом скорость процесса догорания, так же как и скорость сгорания в начальной фазе, в большей мере зависит от физико-химических свойств рабочей смеси, чем от интенсивности ее турбулентного движения. [c.164]

    Физико-химические явления процесса фосфорилирования, протекающие в твердой среде, характеризуются существенной неста-ционарностью, сущность которой определяется взаимоотношениями между рассматриваемыми стадиями. Для синтеза диаграммы связи процесса разобьем гранулу сополимера на N зон с характеристическим размером каждая из которых, за исключением последней, геометрически представляет шаровой слой. Будем выделять стадию химического превращения сополимера последовательно в каждой из этих зон, где достигается локальный максимум скорости химического превращения сополимера. Критерием перехода реакционной зоны с г-го в (г + 1)-е положение является условие полного превращения исходного твердого реагента (сополимера) в г-й зоне р (г) 0. В результате последовательно получим топологические суперпозиции. [c.340]

    Построение диаграммы связи физико-химических стадий процесса с учетом их взаимосвязи, нестацнонарности и принятых допущений выполним в несколько этапов так же, как это делалось при моделировании процесса фосфорилирования 1) разбиваем гранулу сополимера на N зон с характерным размером 6q, каждая из которых, за исключением последней, геометрически представляет собой шаровой слой 2) будем локализовать стадию химического превращения сополимера последовательно в каждой из этих зон (где достигается локальный максимум скорости сульфирования) 3) в качестве критерия перехода реакционной зоны из i-ro в (i + 1)-е положение примем условие полного превращения исходного твердого реагента (сополимера) в i-й зоне gi (t) -v 0. В результате топологическая структура, отражающая взаимосвязь двух стадий, примет вид, изображенный на рис. 5.10. [c.353]

    Физико-химическая диаграмма системы при переменной температуре называется политермной диаграммой. Политерма определяет растворимость одного вещества в присутствии другого при различных температурах и позволяет производить расчеты некоторых процессов, протекающих с изменением температуры (охлаждение, политермическая кристаллизация солей). [c.107]

    Для физико-химических исследований процессов испарения и роста кристаллов, кинетики и термодинамики поверхностных реакций, а также для изучения пространственного и энергетического распределения молекулярных потоков с исследуемых поверхностей СКВ Аналитического приборостроения АН СССР совместно с Институтом кристаллографии АН СССР разработало масс-спектрометр МС-1303 (рис. III.18). Масс-спектрометр МС-1303 имеет такие же анализатор и системы регистрации ионных токов, что и прибор МС-1301, однако существенно отличается от него конструкцией ионообразующего узла и испарителей. Источником молекулярного пучка служит открытая поверхность исследуемого вещества (площадью 2 мм ), помещенного в испаритель, который можно нагревать до 2750 К. Испаритель можно поворачивать относительно направления на источник ионов на 90°, что позволяет изучать диаграммы направленности молеку.чярного потока. [c.78]

    В приложении к кристаллизационным методам наиболее информационно емким критерием эффективности очистки является, как известно, коэффициент распределения примеси (k), и практически все исследования в этой области прямо или косвенно связаны с нахождением k. В частности, для физико-химического обоснования процессов кристаллизацион ной очистки особый интерес представляют диаграммы конден сированного состояния систем очищаемое вещество—при месь. Анализ подобной информации позволяет не только пред сказать поведение примесного компонента в процессе кристал лизации, но и во многих случаях полуколичественно оценить эффективность удаления примеси путем определения ее равновесного коэффициента распределения ( о)- [c.116]

    Затем изложены принципы построения моделируюш их алгоритмов ФХС по диаграммам связи. Приведение математической модели ФХС к форме информационного потока в виде блок-схемы является основной промежуточной стадией между формулировкой уравнений модели и составлением программы численного решения уравнений на ЭВМ. Существующие методы блочно-ориентированного программирования требуют наличия полных аналитических описаний всех составных частей системы, недостаточно формализованы, и эффективность этих методов в значительной мере определяется уровнем квалификации и интуицией исследователя. Рассматриваемый метод топологического описания ФХС открывает путь к формализованному построению полного информационного потока системы в виде блок-схемы непосредственно по связной диаграмме ФХС без записи системных уравнений, что снижает вероятность принятия ошибочных решений. При этом блок-схема моделирующего алгоритма ФХС всегда основана на естественных причинно-следственных отношениях, соответствующих механизму исследуемого физико-химического процесса. Моделирующий алгоритм, синтезированный по связной диаграмме, представляет блочно-ориентированную программу более высокого уровня, чем информационные потоки, составленные вручную на основе аналитического описания ФХС. В такой программе каждому блоку соответствует определенный оператор, а сам алгоритм непосредственно подготовлен для программирования на аналого-цифровых комплексах с применением современных операционных систем. [c.292]

    Началом процедуры является построение самых общих структурных схем или диаграмм процесса, аналогичных рассмотренным выше, которые затем детализируются. При этом переход от диаграмм к математическим моделям осуществляется не в лингвисти-чески-смысловой форме, как это делается, например, в [4], а автоматизированно. Программный комплекс BOND метода включает 17 основных программ на языке Фортран и позволяет воспринимать информацию в виде диаграмм процессов перерабатывать эту информацию сообщать пользователю, какой вид системы уравнений соответствует введенной диаграммной информации и, если этот вид удовлетворяет пользователю, то ЭВМ идентифицирует параметры модели находит решение уравнений математической модели и построит графики изменения требуемых переменных состояния процесса [10J. Пользователь оценивает полученную количественную информацию с физико-химической точки зрения, и если она его не удовлетворяет, то он вносит коррекцию в рисунок процесса в виде диаграммы, которая изображается на экране дисплея. Так в результате диалога пользователя с ЭВМ итеративно рождается правильный диаграммный образ физико-химического процесса и параллельно с ним в ЭВМ автоматически формируется система уравнений, представляющая адекватную математическую модель процесса в рамках представлений данного пользователя til, 12]. [c.226]

    Добыча и переработка растворимых природных солей (галлургия) основана на сочетании процессов выщелачивания, выпаривания, кристаллизации и обезвоживания при обработке природных солевых растворов. Этими приемами достигается разделение солевых систем на индивидуальные соли. Научной основой галлургии служат работы Л. Г. Вант-Гоффа, Н. С. Курнакова п их школ по физико-химическому анализу солевых систем, в котором изучается связь между составом, состоянием и свойствами этих систем. Диаграммы растворимости позволяют установить условия кристаллизации солей из растворов. [c.140]

    Структуры слияния. Для того чтобы иметь возможность из одно- и двухсвязных элементов строить топологические сети произвольной сложности (т. е. получать связные диаграммы ФХС), необходимо ввести в рассмотрение так называемые типовые влияющие структуры (или узлы слияния субстанций). С физической точки зрения эти структуры позволяют отражать специфическую сторону ФХС — характер совмещенности в данной точке пространства явлений и процессов различной физико-химической природы гидромеханической, химической, диффузионной, электромагнитной и т. п. [c.47]

    Приведены примеры топологического описания отдельных фрагментов гетерофазных ФХС, гидравлических систем и некоторых моделей механики сплошной среды. Описаны два подхода к построению связных диаграмм гидравлических систем. В основе первого подхода лежит аналогия между законами движения твердого тела и деформируемого материального континуума. При этом конечный объем деформируемой сплошной среды рассматривается как единое целое, для которого справедливы те же законы динамики, что и для твердого недеформируемого тела. Второй подход основан на использовании понятия псевдоэнергетических переменных, инфинитезимальных операторных элементов и обобщенных диаграмм связи баланса субстанции произвольного вида. Основное достоинство этого подхода состоит в наглядности представления структуры физико-химических явлений, происходящих в элементарном объеме сплошной среды. Последнее особенно важно при описании сложных ФХС, к которым относятся многофазные многокомпонентные системы, где протекают процессы тепло- и массопереноса совместно с химическими реакциями и явлениями электрической и магнитной природы. [c.182]

    Диаграмма связи в терминах псевдоэнергетических переменных. Физико-химические особенности и условия проведения процесса отмывки ионитов обусловливают решение задачи моделирования процесса отмывки при следуюш их допущениях 1) в процессе отмывки степенью набухания гранулы сополимера можно пренебречь 2) моделью процесса гидратации Н2304 служит реакция второго порядка, которой соответствует следующее уравнение  [c.380]

    В соответствии с представлениями, изложенными в главе 1, карбонизация нефтяного сырья рассматривается как процесс физико-химической эволюции к углероду через непрерывный ряд множеств Mi, каждое из которых обладает определенным составом и свойствами и характеризуегся своей дааграммой состояния, представляющей собой участок многомерного пространства как функцию параметров процесса во времени. Для М, как псевдобинарной смеси растворителя и дисперсной фазы при Р = onst сказанное проиллюстрировано диаграммой состояния с верхней и нижней критическими точками на рис.3.1, где спинодальные и бинодальные поверхности ограничивают области лабильности и метастабильности КМ на пути 2 движения ее к углероду. На промышленных установках это движение осуществляется в условиях изменения Т и Р по сложной зависимости (рис.3.2) и КМ многократно попадает в области метастабильности и лабильности и выходит из них. [c.86]


Смотреть страницы где упоминается термин Физико-химические диаграммы процесса: [c.2]    [c.6]    [c.143]    [c.339]    [c.45]   
Смотреть главы в:

Графические расчеты в технологии неорганических веществ -> Физико-химические диаграммы процесса




ПОИСК





Смотрите так же термины и статьи:

Диаграмма физико-химические

Диаграммы химические



© 2025 chem21.info Реклама на сайте