Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биосинтез белков — роль РНК

    Само существование фиксированной первичной структуры у белковой цепи доказывает, что в клетке должна быть заложена программа построения этой структуры. Текст не может возникнуть в результате случайных встреч аминокислот — подобно типографскому тексту он должен набираться на некоторой матрице. Это понимал уже Кольцов задолго до открытия роли нуклеиновых кислот. Он считал, что роль матрицы, ответственной за синтез белка, играет также белок. Сейчас мы знаем, что матрицами служат молекулы ДНК и РНК. Для набора текста необходим генетический код. Матричный принцип биосинтеза белка является основным для молекулярной биологии и молекулярной биофизики. [c.262]


    Рассмотренные выше белки расположены таким образом, чтобы продемонстрировать различные аспекты структуры и функции. Эта классификация в известной степени произвольна. Так, читатель может принять во внимание, что гемоглобин и мышечные белки могут рассматриваться в разделе белок-белковых взаимодействий, тропонин С —как белок, связывающий ион металла, а миозин — как белок, претерпевающий посттрансляционное метилирование. Белки можно изучать в нескольких аспектах, включая биосинтез, структуру, взаимодействия и биологическую роль. Любая попытка их классификации будет, по-видимому, лишь частично успешной, однако она дает возможность выдвинуть на передний край сходства и различия. Рассмотренные белки охватывают очень широкую область, вследствие чего описания являются вынужденно краткими. Рекомендуем читателю обратиться к цитированным обзорам. [c.579]

    Но этот же пример показывает, что по мере развития естествознания конкретные естественнонаучные положения претерпевают неизбежно коренные изменения. Так, сегодня но сравнению с XIX веком существенно изменились представления о материальном носителе , или субстрате , жизни. Во времена Энгельса и Шорлеммера за таковой принимался белок со всеми его разновидностями. В настоящее время установлено, что наряду с ним не менее важную роль в процессах жизнедеятельности (органическом обмене веществ, биосинтезе, наследственности) играют сложные органические вещества небелкового характера, а именно нуклеиновые кислоты. [c.237]

    Известно два матричных процесса биосинтеза синтез нуклеиновых кислот и синтез белка. Между ними есть существенная разница при очень большом подобии — при синтезе нуклеиновых кислот роль матрицы выполняет также нуклеиновая кислота гомологичная система), при синтезе белка матрицей является нуклеиновая кислота, а продуктом синтеза — белок гетерологичная система). Если в первом случае передача информации о последовательности соединения оснований в цепи вновь синтезируемой нуклеиновой кислоты достигается непосредственно путем подбора комплементарных оснований, то при синтезе белка на нуклеиновой матрице должен существовать какой-то промежуточный механизм, позволяющий переводить последовательность оснований матрицы на язык аминокислотной последовательности белка. [c.485]

    Теперь очень кратко о структуре белка и о том, какую задачу должен выпо нять меха Ш13М биосинтеза Белок как вещество в соответствии с его ролью, может образовывать твер дое или эластичное тело гель, или истинный раствор в воде. Тем не менее основа белка —- это [c.3]


    В процессе биосинтеза белка случаются ошибки, следствием которых является изменение нормальной последовательности аминокислотных остатков. Образующийся аномальный белок, лишенный биологической активности, является результатом генетической мутации. Она происходит, если в ДНК, кодирующей данную полипептидную цепь, химически изменяется или выпадает одно мононуклеотидное звено или же если в эту ДНК включается один лишний мононуклеотид. При этом нормальная, непрерывная последовательность кодирующих триплетов в гене изменяется и соответствующим образом изменяется аминокислотная последовательность полипептидной цепи, кодируемой этим геном. В большинстве случаев процесс ограничивается заменой одной-единственной аминокислоты на другую. Исследование таких мутантных белков (т. е. белков с каким-либо изменением, являющимся результатом мутации) представляется очень важным, так как оно дает возможность обнаруживать те аминокислотные остатки полипептидной цепи, которые играют существенную роль в определении структуры и функции белка. [c.382]

    Хорошим примером дискретной системы, которую можно выделить и которая содержит тесно ассоциированные друг с другом белки и нуклеиновые кислоты, является вирус. Вирус простейшего типа состоит из РНК или ДНК, одно- либо двухцепочечной, окруженной белковой оболочкой, состоящей из идентичных или различных субъединиц, организованных в симметричную структуру. В более сложных типах вирусов имеется также внешний слой, состоящий из липидов и гликопротеинов. Между нуклеиновой кислотой и белком (белками) оболочки существует тесная взаимосвязь, генетическая информация для биосинтеза этого белка закодирована в нуклеиновой кислоте, и в то же время белок предохраняет нуклеиновую кислоту от действия нуклеаз клетки-хозяина. Еще более тесная физическая связь имеет место между белковыми субъединицами. Такая связь была продемонстрирована в результате разрушения вируса табачной мозаики, за которым следовала спонтанная самосборка белка в отсутствие нуклеиновой кислоты. Пустая оболочка, или капсида, была, однако, менее стабильна, чем содержавшие нуклеиновую кислоту реконструированные вирусные частицы. Этот результат указывает, что взаимодействия белок-ну-клеиновая кислота играют важную, хотя, вероятно, не столь значительную роль, по сравнению с белок-белковыми взаимодействиями. Вирусы, таким образом, как бы образуют смысловой мостик между предыдущим разделом и рассматриваемым ниже взаимодействием гистонов с нуклеиновыми кислотами. [c.567]

    Время полужизни. Стабильность молекул РНК может варьировать в широких пределах. У высших организмов она в среднем намного выше, чем у бактерий. Такое различие, очевидно, частично обусловлено тем, что биосинтез белков у высших организмов протекает более медленно (при 37° в ретикулоцитах кролика за одну секунду включаются в белок 2 аминокислоты, а.у Е. oli — 100 аминокислот). Стабильность различных молекул тя-РНК может заметно варьировать даже в пределах одной и той же клетки. Молекулы РНК некоторых РНК-содер кащих фагов могут непосредственно выполнять роль /тг-РНК, не разрушаясь в течение жизненного цикла фага в зараженной бактериальной клетке (30—55 мин при 37°). У высших организмов т-РНК еще более стабильна. Активный цитоплазматический комплекс, состоящий из ге-РНК, рибосом и s-PHK, может, вероятно, функционировать непрерывно в течение нескольких дней в некоторых случаях синтез белка на стабильных РНК-матрицах происходит даже в отсутствие ядерной ДНК (эритроциты млекопитающих) и без сколько-нибудь заметного обновления РНК. [c.504]

    Фенолазный комплекс следует отличать от фермента лакказы, найденного в некоторых растениях (Накамура [64], Мальмстром и сотр. [65]). Лакказа представляет собой медьсодержащий белок она катализирует окисление п-дифенолов, но не способна гидроксилировать моно([зенолы. Вначале была установлена способность лакказы окислять о-дифенол пирокатехин, но впоследствии этот факт был опровергнут [59]. Лакказа может вызывать окисление наряду с другими субстратами также /г-фенилендиамина и аскорбиновой кислоты, чем она резко отличается от фенолазного комплекса. Возможная роль ее в биосинтезе лигнина кратко обсуждается в разделе VH. [c.327]

    Вирусы, которые не имеют клеточной структуры, являются с химической точки зрения также нуклеоиротеидами. Важная биологическая роль нуклеиновых кислот в вирусах выясняется из того факта, что при заражении вирусом (например, бактериофагом — Bjipy oM бактерий) заражаемая клетка получает от вируса только нуклеиновую кислоту, а белковая часть (оболочка) вируса остается снаружи, в клетку не проникает и отбрасывается. После заражения внутри клетки-хозяина за счет нуклеотидных, аминокислотных н ферментных ресурсов этой клетки вырастает множество частиц вируса (бактериофага). Эти новые частицы состоят не только из многократно повторенных нуклеиновых кислот, но имеют и белковые оболочки, тождественные с белком исходной заражающей частицы вируса, хотя белок не проникал в зараженную клетку. Отсюда ясно, что нуклеиновые кислоты принимают решающее участие в биосинтезе белка, чему позднее мы приведем и другие доказательства. Это поставило полинуклеотиды в центр интересов современного естествознания, тогда как отдельные нуклеотиды были известны еще со времен Либиха. [c.673]


    В серии работ П. Льюиса и Г. Шераги [74, 75] рассмотрен механизм свертывания полипептидных цепей в белках при учете только ближних взаимодействий. Предполагалось, что в процессе ренатурации или сразу же после биосинтеза самосборка белковой цепи в нативную конформацию начинается с образования а-спиралей, которые в дальнейшем и определяют направление свертывания окончательной структуры. Следовательно, в этих работах постулировалось, что регулярные конформации являются самыми стабильными формами в гетерогенной последовательности, составляют жесткую основу глобулы и играют ключевую роль в процессе самосборки белковой цепи. Сближенность спиралей и образование контактов между ними осуществляются так называемыми -изгибами. С. Венкатачалам ранее показал, что поворот цепи на 180° может происходить на участке из четырех остатков с определенными комбинациями форм их основных цепей [76]. Позднее Е.М. Поповым и сотрудниками была получена энергетическая оценка всех возможных конформационных состояний двух центральных остатков тетрапептида, обеспечивающих такой поворот цепи [77], П. Льюис и Г. Шерага рассмотрели аминокислотный состав тетрапептидов в трех белках известной структуры и отметили повышенную тенденцию находиться в -изгибах у остатков Ser, Thr, Asn, Asp, Glu, Pro, Trp и Tyr [74]. Поворотные сегменты являются менее гидрофобными, чем белок в целом. Вначале авторы полагали, что в образовании изгибов, как и в случае регулярных структур, важное значение имеют лишь ближние взаимодействия. Это послужило основой определения вероятности локализации каждого остатка в одном из четырех мест -изгиба независимо от соседей. Вероятность появления изгиба определялась как произведение индивидуальных вероятностей четырех остатков, найденных с помощью статистического анализа. В дальнейшем при рассмотрении аминокислотного состава 135 -изгибов в структурах восьми белков к остаткам, имеющим наибольшую склонность образовывать повороты цепи, Льюис и Шерага отнесли Ser, Thr, Asp и Asn [78]. На основе расчета трех тетрапептидов в различных конформационных состояниях, имеющих изгибы, они пришли к заключению, что в местах поворота цепи остатки не ведут себя независимо. Их конформации взаимообусловлены и, кроме того, подвержены влиянию [c.249]

    Изучение влияния отдельных фракций соевой муки на рост S. griseus и образование антибиотика показали, что существенную роль при этом играют жиры и зольная часть соевой муки. Белок сои и его кислотный гидролизат малопригодны для биосинтеза стрептомицина (табл. 45, 46). [c.223]

    В последнее время роль рецепторов, распознающих данный белок в регуляции его биосинтеза, была подвергнута детальному анализу. В качестве модельной служила система биосинтеза покоящимися макрофагами lq-компонента комплемента. Опыты выполняли ш viiro в среде 199, не содержащей сыворотки крови, что позволяло исключить влияние не поддающихся точной оценке сывороточных факторов. Источником глицина служил С-глицин. [c.88]

    Главной полимеразой кишечной палочки является ДНК-полимераза III. Это—сложный, термолабильный белок (М = 300 ООО), состоящий из субъединиц сх (140000), р (37000), у (52000), 6 (32000), е (25000) и (10000) полимеразную реакцию осуществляет каталитический кор из oi-, е- и 0-субъединиц, в котором главную роль играет сх-субъединица р-, у- и 6-субъединицы являются регуляторными и усиливают действие каталитического ядра ДНК-полимеразы III. В клетке кишечной палочки всего 20 молекул этого белка. Именно ДНК-полимераза III ответственна у кишечной палочки за процесс репликации ДНК. Она работает в ее клетке в комплексе с белковыми факторами, тоже принимающими участие в репликации ДНК, полностью обеспечивая главную ступень ее биосинтеза—элонгацию (продолжение) сборки дезоксиполирибонуклеотидной цепи. [c.250]

    Роль минеральных элементов в обмене белков. Распад и синтез белковых тел в значительной степени зависят от ряда минеральных элементов. Ионы Мп, Fe, Zn, Со и Ni повышают активность пептидгидролаз и аргиназы, т. е. участвуют в деструкции белков. Биосинтез белков идет при непосредственном участии ионов К, Mg и Мп. Первый и второй необходимы для поддержания рибосом в функционально активном состоянии, причем от концентрации Mg " зависит уровень помех в кодон-антикодоновом взаимодействии. Третий обеспечивает осуществление пентидилтрансферазной реакции при сборке полипептидной цепи. Ионы Ni влияют на высвобождение многих пептидных гормонов по завершении их биосинтеза, а ионам Са принадлежит центральная роль в функционировании сократительных белков. Си -содержапщй белок митохондрий—митохондрокупреин, представляет депо меди для синтеза цитохромоксидазы. [c.438]


Смотреть страницы где упоминается термин Биосинтез белков — роль РНК: [c.626]    [c.267]    [c.483]    [c.210]    [c.145]    [c.148]    [c.93]    [c.94]    [c.210]    [c.125]   
Смотреть главы в:

Основы органической химии -> Биосинтез белков — роль РНК




ПОИСК





Смотрите так же термины и статьи:

Белков биосинтез



© 2025 chem21.info Реклама на сайте