Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь между белками и углеводами

    Рассматривая обмен веществ, мы излагали отдельно обмен белков, обмен жиров, обмен углеводов и т. п. Однако такое деление является искусственным и диктуется исключительно удобством изложения. В действительности обмен веществ в организме протекает как единое целое при тесном взаимодействии и взаимообусловленности отдельных составляющих его процессов. Даже первый этап обмена — переваривание пищи — представляет собой одновременно протекающий процесс распада белков, жиров и углеводов в желудочно-кишечном тракте. Дальнейшие превращения белков, жиров и углеводов в тканях в процессах промежуточного обмена настолько интимно связаны между собой, что для целого организма обмен, например, белков, изолированный от обмена углеводов, является абстракцией. [c.378]


    СВЯЗЬ МЕЖДУ БЕЛКАМИ И УГЛЕВОДАМИ [c.378]

    Одним из наиболее важных типов слабых связей между биологически активными молекулами является водородная связь (гл. 2, разд. А.7). Мы уже говорили о том, какова роль диполь-дипольного взаимодействия этого типа для формирования структуры белков, углеводов и нуклеиновых кислот. Рассмотрим теперь значение водородных связей для биологического растворителя — воды. [c.246]

    Связь между обменом углеводов, жиров и белков [c.414]

    Задачи по органической химии в целом расположены в соответствии с традиционной последовательностью изучения классов органических соединений (углеводороды, спирты, фенолы, карбонильные соединения, карбоновые кислоты, сложные эфиры, жиры, углеводы, амины, аминокислоты, белки, гетероциклы, нуклеиновые кислоты). Однако во многих задачах отражены многочисленные генетические связи между различными классами органических веществ, поэтому соответствие расположения задач традиционному курсу химии в значительной степени условно и относительно. [c.123]

    Пировиноградная кислота является также связующим звеном между обменом углеводов и белков, так как она может образоваться из продуктов превращений ряда аминокислот. С другой стороны, она служит источником синтеза аминокислоты аланина, из которой в результате переаминирования могут образовываться другие аминокислоты  [c.160]

    ТИПЫ СВЯЗЕЙ МЕЖДУ УГЛЕВОДАМИ И БЕЛКАМИ В УГЛЕВОД-БЕЛКОВЫХ КОМПЛЕКСАХ [c.84]

    СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ, ЖИРОВ И УГЛЕВОДОВ [c.378]

    Благодаря такому превращению продуктов обмена углеводов в аминокислоты возникает прямая связь между обменом углеводов и белков. [c.379]

    Курс органической химии характеризуется стройной структурой, взаимосвязью классов соединений углеводороды— спирты — альдегиды — кислоты — сложные эфиры — углеводы — амины — аг/инокислоты — белки. Это обстоятельство позволяет широко применять в системе самостоятельных работ учащ1 хся генетические связи между классами соединений (переход от менее сложного к более сложному и, наоборот, от слолсно о к простому), логические операции, особенно сравнения, снсто . а-тизация и обобщения. [c.153]

    Из аорты человека выделено соединение, состоящее гепарина и белка, которое содержит ковалентную связь и является гликопротеином . После обработки его гиалуронидазой и протеиназами , а также в результате мягкого кислотного гидролиза получены низкомолекулярные гликопептиды 0-ксилозид серина и галактозилксилозид серина , что непосредственно доказывает природу одного из типов связи гепарина с пептидной цепью бглка в гепарин-белковом комплексе. Структура кси-лозида серина была подтверждена встречным синтезом . Таким образом, в настоящее время наличие ковалентной связи между белковой частью и углеводами соединительной ткани можно считать строго доказанным. [c.580]


    В настоящее время установлена совершенно конкретная связь между различными формами обмена. Она выражается в том, что отдельные структурные элементы белков, жиров и углеводов могут превращаться друг в друга после соответствующей химической перестройки. Так, например, аминокислоты используются для синтеза углеводов и наоборот. На этой стороне связи мы остановимся более подробно. [c.378]

    В настоящее время с полной определенностью можно говорить о совершенно конкретной связи между различными формами обмена. Она выражается в том, что отдельные структурные элементы белков, жиров и углеводов могут превращаться друг в друга после соответствующей химической перестройки. Так, например, аминокислоты могут быть использованы для синтеза углеводов и наоборот. Но дать полную картину последовательного хода рассматриваемых превращений пока еще не представляется возможным. [c.360]

    Мукопротеины тина хондропротеинов были найдены не только в хрящах, но также и в сухожилиях, стенках аорты и склере. По поводу тина связи между хондроитинсульфатом и белком, Левин писал Определить способ связи между углеводом и белком просто. Щелочь, слишком слабая, чтобы вызвать расщепление белковой молекулы или углеводного остатка, вызывает разрушение связи между белком и углеводным фрагментом. Поэтому простейшее допущение состоит в том, что в природе соединение осуществляется посредством сложноэфирной связи . Важным вкладом Левина в химию мукопротеинов была его фундаментальная работа о гексоз-аминах. [c.16]

    К. с. рассматривается как определенная характеристика энантиомерных объектов молекулы, имеющие одинаковую последовательность связей между атомами и одинаковое относит, расположение атомов в пространстве, но являющиеся энантиомерными объектами, обладают разл. конфигурациями. К. с. хиральной молекулы может сохраняться при значит, деформации этой молекулы, но переход одного энантиомера в другой всегда означает обращение К.с. Совр. рассмотрение К.с связывает ее с понятием молекулярной топологической формы (МТФ) молекулы, под к-рой понимается геом. фигура (в топологич. смысле), характеризующая пространств, расположение ядер данного объекта в сочетании с особыми точками, как, напр., центр инверсии. К.с. сохраняется при любых деформациях молекулы до тех пор, пока не исчезает хиральность и пока сохраняется МТФ. Учет К.с. необходим при определении строения и планировании синтеза мн. классов прир. соединений, таких, как углеводы, пептиды и белки, антибиотики, алкалоиды и т.д. [c.457]

    Другая крупная проблема состоит во взаимодействиях между белками и другими биохимическими компонентами растений, особенно углеводами, липидами и фенольными соединениями, которые очень часто, если не всегда, оказываются связанными с изолированными белками. Каков характер этих связей Когда они образуются Как они разрываются Как они отражаются на физико-химических или питательных свойствах белков Эти вопросы изучаются в НИАИ и университете Бордо. [c.12]

    Обработка белков 6 М НС1 при 110°С в вакууме приводит к гидролизу пептидных связей, но одновременно с этим происходит разложение триптофана, гидролиз аспарагина и глутамина соответственно до аспарагиновой и глутаминовой кислот, а также частичное разложение серина, треонина, цист(е)ина. Пептидные связи между аминокислотами с объемистыми боковыми группами, такими как Пе и Val, более устойчивы к гидролизу. Хорошо известно, что гидролизуя образцы белков в течение 1, 2 и 3 дней, необходимо экстраполировать количество таких аминокислот, как Ser и Thr к нулевому времени, а Пе и Val — к бесконечному. В случае цист(е)ина целесообразно перед гидролизом либо окислить его в цистеиновую кислоту, либо превратить в 5-карбоксиметилци-стеин или 4-пиридилэтилцистеин (см. разд. 23.3.3), так как все эти соединения стабильны. Обычно, в особенности если белок содержит углеводы, образуются продукты осмоления. После гидролиза соляную кислоту лучше удалить, так как она мешает при после дующем разделении аминокислот. [c.259]

    Приготовление хлеба начинается с замеса для получения однородного по всей массе теста. Его продолжительность 7— о мин для пшеничного хлеба и 5—7 мин для ржаного хлеба. 0 это время происходят сложные, в первую очередь, коллоидные 0роцессы набухание муки, слипание ее частичек и образование ассы теста. В них участвуют все основные компоненты теста белки, углеводы, липиды, однако ведущая роль принадлежит белкам Белки, связывая воду, набухают, отдельные белковые макромолекулы связываются между собой за счет разных по энергии связей и взаимодействий и под влиянием механических воздействий образуют в тесте трехмерную сетчатую структуру, 0олучнвшую название клейковинной. Это растяжимый, эластичный скелет или каркас теста, во многом определяющий его физические свойства, в первую очередь упругость и растяжимость. В этот белковый каркас включаются крахмальные зерна, продукты деструкции крахмала, растворимые компоненты муки и остатки оболочек зерна. На него оказывают воздействие углекислота и поваренная соль, кислород воздуха, ферменты. В дальнейшем, в ходе брожения теста, клейковинный каркас постепенно растягивается. Основная часть теста представлена крахмалом, часть зерен которого повреждена при помоле. Крахмал также связывает некоторое количество воды, но объем его при этом увеличивается незначительно. Кроме твердой (эластичной) в тесте присутствует и жидкая фаза, содержащая водорастворимые (минеральные и органические) вещества, часть ее связывается нерастворимыми белками при их набухании. При замесе тесто захватывает и удерживает пузырьки воздуха. Следовательно, после замеса тесто представляет собой систему, состоящую из твердой (эластичной), жидкой и газообразной фаз. [c.107]


    Экстракцией 6%-ным раствором гидроксида калия из измельченных стеблей сильфии 49] выделен белково-полисахаридный комплекс, не разделяющийся в условиях гель-фильтрации и электрофореза. Оп содержал 71 %i полисахарида и более 20% белка. Для оценки взаимосвязи между полисахаридом и белком комплекс фракционировали на ДЭАЭ-целлюлозе и сефадексах G-100 и G-200. В отдельных пробах определяли содержание белка и углеводов. Белковая составляющая не отделялась от полисахаридной, но максимумы их не совпадали, что свидетельствует об отсутствии прочной химической связи между этими полимерами. Аналогичные результаты были получены при попытке расфракциониро-вать этот комплекс методом электрофореза. Количественная ха- [c.117]

    ГИДРОЛАЗЫ, класс ферментов, катализирующих гидролиз связей между атомом углерода и гетероатомом, в част-яости пептидных связей (напр., фермент химотрипсин), амидных (напр., пенициллгтамидаза), гликозидных (напр., амилаза), сложноэфирных (напр., липаза). Участвуют в обмене белков, нуклеиновых к-т, углеводов, липидов. См., напр., Аденозинтрифосфатазы, Глюкозофосфатазы, Дезоксирибонуклеазы, Пепсин, Рибонуклеазы, Трипсин, Фос-фолипазы. [c.133]

    Аспарагиновая и глутаминовая кислоты (формулы которых приведены выше) являются широко распространенными компонентами белков. Эти дикарбоновые аминокислоты играют важную роль в реакции переаминирования и передезаминирования, образуясь или превращаясь при этом в оксалилуксусную и соответственно а-кетоглутаровую кислоты таким образом, устанавливается связь между обменом белков и углеводов. Глутаминовая кислота является составной частью многих соединений пептидного характера, как, например, глутатиона и фолиевой кислоты. [c.396]

    Поскольку ацотнл-КоЛ образуется ite только в результате окисления жирных к-т, iio также н из углеводов в нроцессе гликолиза и нз нек рых аминокислот, то создается связь между обменом белкой и углеводов и обменом /iv. [c.34]

    При изучении лекарственных препаратов и связанных с ними соединений следует обратить особое внимание на их химические свойства и попытаться установить связь между строением и физиологическим действием в тех случаях, когда имеются достаточные для этого данные. Однако затруднения, с которыми приходится встретиться при выяснении этой свяяи, осложняются скудостью сведений в вопросе протопла5матической> реакции между ле-нврственным веществом и разнородными компонентами тканей, именно углеводами, жирами, белками, стеринами, металлосодержащими компонентами и т. д., которые сами ио себе не однородны и могут быть очень чувствительны к изменениям под влиянием лекарственного препарата [1]. [c.674]

    Белки имеют особое значение в биологии, так как они представляют собой незаменимую основу живого вещества. Правда, живые организмы содержат, помимо белков, также углеводы и липиды, часто даже в больших количествах, чем белки. Так, зеленые растения богаче углеводами (целлюлозой), чем белками. Однако между белками и другими составными частями клетки имеются существенные различия. Всюду, где мы встречаемся с явлениями роста и размножения, мы находим, что в этих процессах первенствующую роль играют белки. В ядер-ных клетках деление связано с наличием в ядре белков, соединенных с нуклеиновыми кислотами, — нуклеопротеидов. У бактерий, которые не имеют видимого ядра, белки и нуклеопро-теиды образуют основную массу живого вещества. Если мы спустимся ниже по лестнице живых существ, то мы найдем, что вирусы состоят главным образом из белков и нуклеопротеидов, а самые простейшие из них совсем не содержат липидов и углеводов. [c.5]

    Реакции трансаминирования имеют чрезвычайно важное биологическое значение, так как они являются весьма вероятнцм способом, обеспечивающим связь между углеводами и белками. [c.373]


Смотреть страницы где упоминается термин Связь между белками и углеводами: [c.255]    [c.132]    [c.17]    [c.96]    [c.76]    [c.247]    [c.76]    [c.247]    [c.352]    [c.391]    [c.488]    [c.98]    [c.352]    [c.215]    [c.84]   
Смотреть главы в:

Биологическая химия Издание 3 -> Связь между белками и углеводами




ПОИСК







© 2025 chem21.info Реклама на сайте