Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ТЕПЛООБМЕННЫЕ АППАРАТЫ Основы теории теплообмена

    При расчете неподвижных емкостных и теплообменных аппаратов основой для инженера-механика является теория пластин и оболочек. Аппараты рассмотрены как сочетания этих элементов. [c.3]

    В монографии рассмотрены основы теории теплообменных процессов и теплообмен в химико-технологических аппаратах. Материал подобран с учетом имеющихся публикаций, что позволило авторам изложить некоторые вопросы кратко, с указанием специальной литературы (например, общие вопросы теплообмена, расчет и оптимизация химических реакторов, кожухотрубчатых теплообменников и т. д.). [c.7]


    Правильный выбор определяющих факторов позволяет достичь необходимой точности при расчетах площади поверхности теплообмена в аппаратах без излишнего усложнения расчетных зависимостей. К сожалению, состояние теории часто не позволяет надежно предсказывать характеристики процесса теплообмена при кипении в разнообразных условиях эксплуатации теплообменных аппаратов. Поэтому, несмотря на большой объем выполненных к настоящему времени исследований, окончательные решения при проектировании аппаратов, в которых осуществляется процесс кипения, в ряде случаев могут быть приняты только на основе специально поставленного эксперимента. Этим же объясняется и преимущественно экспериментальный характер работ, посвященных исследованиям теплообмена при кипении, а также тот факт, что большинство расчетных формул, используемых на практике, представляют собой более или менее удачные интерполяционные зависимости, полученные на основе экспериментальных данных. Тем не менее, особенно в последние годы, появилось много работ, посвященных изучению механизма отдельных процессов, сопровождающих кипение (образование и рост паровых пузырьков, частота их отрыва, движение в жидкости и т. п.). Интерес исследователей к изучению этих элементарных процессов оправдан. Знание закономерностей развития элементарных актов при кипении дает основу для построения математических моделей кипения гораздо более гибких и надежных, чем формальные эмпирические корреляции. Можно утверждать, что будущее инженерных расчетов— за методами, имеющими прочную теоретическую основу, базирующуюся [c.210]

    Для неподвижных емкостных и теплообменных аппаратов характерными являются расчеты на устойчивость, особенно актуальные при действии внешнего давления. Основой для этих расчетов послужила теория устойчивости стержней, подвергающихся осевому сжатию. [c.3]

    Во втором разделе сосредоточены материалы по теории и расчету теплообменных аппаратов. Здесь в систематизированном виде приведены зависимости, преимущественно в критериальной форме, для расчета процессов теплоотдачи при постоянном агрегатном состоянии вещества, а также при конденсации и кипении рабочих тел. На основе этих зависимостей [c.3]

    Во втором разделе сосредоточены материалы по теории и расчету теплообменных аппаратов. Здесь в систематизированном виде приведены наиболее новые зависимости, преимущественно в критериальной форме, по расчету теплоотдачи как без изменения агрегатного состояния вещества, так и при конденсации и кипении рабочих тел. На основе этих зависимостей изложена методика расчета теплообменников, выпарных аппаратов, конденсаторов с соответствующими цифровыми расчетами. В этом разделе отражены особенности расчета теплообменников высокого давления, спиральных, оросительных и ребристых теплообменников. Наряду с тепловыми расчетами выпарных аппаратов приводится конструктивный расчет аппаратов (в частности расчет парового пространства), а также тепловой расчет конденсатора смешения, разработанный проф. И. И. Чернобыльским. [c.3]


    Изложены основы теории и мечоды расчета процессов теплопроводности в твердых телах, конвективного теплообмена в однофазной среде, теплообмена при конденсации и кипении, теплообмена излучением между телами, разделенными прозрачной или поглощающей и излучающей средой. Рассмотрены теоретические основы совместных процессов массо- и теплообмена применительно к задачам теплоэнергетики, в том числе и промышленной. Приведены основные положения теплогидравлического расчета теплообменных аппаратов. [c.2]

    Учение о теплообмене и его инженерно-технические приложения наиболее широкое плодотворное развитие получили в СССР. Акад. М. В. Кирпичевым создана школа, работа которой развивалась главным образом в направлении изучения физической сущности процессов теплообмена и работы тепловых устройств. Многие из работ этой школы определяют собой направление дальнейшего развития учения о теплообмене. Из них особенно большое значение имеют работы по теориям подобия и теплового моделирования, которые открыли широкие возможности в части обобщения опытных данных и изучения рабочих процессов в теплообменных аппаратах. Лучшая сводка результатов этих работ дана в учебнике проф. М. А. Михеева Основы теплопередачи (Госэнергоиздат, 1949). [c.75]

    На основе теории процесса окисления сернистого ангидрида была предложена следующая методика определения оптимального температурного режима контактного аппарата с помощью вычислительных устройств. При адиабатическом процессе (в контактных аппаратах с промежуточным теплообменом) справедливо соотношение  [c.310]

    Рассмотрены элементы технической гидравлики перемещение жидкостей сжатие и разрежение газов перемешивание разделение неоднородных смесей основы теорий теплопередачи и мас-сообмена теплообменные аппараты процессы выпаривания, абсорбции, дистилляции и ректификации, экстракции, адсорбции, сушки, кристаллизации, холодильные, измельчения твердых материалов и их классификации. [c.200]

    Изложены основанные на системном анализе принципы развития теории расчета теплообменного оборудования с использованием новых функциональных классификаций на базе обобщенных структур этих расчетов и ограниченного числа специфических модулей. Описан новый подход к решению различных задач теплового расчета теплообменных объектов любой сложности на основе обобщенной системы расчета теплопередачи, связывающей в единое целое расчеты в сечении теплопередающих поверхностей произвольной формы, элементарных схемах тока сред, рядах и комплексах аппаратов. [c.2]

    Если при соединении разных оболочек вращения применяются плавные переходы по толщине и по геометрической форме, то при расчете оболочек можно использовать формулы безмоментной (мембранной) теории. Например, в настоящее время можно считать вполне установленным, что при принятых в современном аппаратостроении параметрах эллиптических, сферических и конических с плавным переходом днищ влияние. краевого эффекта на цилиндр и на днища незначительно, поэтому обечайка и днища могут быть рассчитаны по мембранной теории. Ниже приводятся расчеты основных элементов корпуса теплообменных аппаратов на основе мембранной теории. [c.235]

    Рассмотрены основы теории конвективного теплообмена в по- точных аппаратах и приведен их расчет. Главное внимание уделено исследованию полей скоростей й температур - основным характеристикам, связывающим гидродинамику с теплообменом. Эта взаимосвязь рассмотрена для случая плоских и гофрированных каналов и труб. [c.2]

    В книге рассмотрены процессы в теплообменных аппаратах, в выпарных, ректификационных, сушильных и холодильных установках, в тепловых насосах и трансформаторах промышленных предприятий. Применительно к этим процессам рассмотрены основы теории тепло- и массообмена, даны методы и примеры расчета аппаратов и установок. [c.2]

    Изложены основы теории, устройство и принцип действия паровых, газовых, термоэлектрических, пароэжекторных и абсорбционных холодильных машин, а также поршневых, винтовых, ротационных й лопаточных холодильных компрессоров. Рассмотрены конструкция и расчет теплообменных аппаратов холодильных машин. Уделено значительное внимание использованию вторичных энергетических ресурсов. [c.253]

    Для практики проектирования пенных теплообменников наиболее важен случай охлаждения газа, не насыщенного водяными парами, при его высокой начальной температуре, так как в производственных процессах температура охлаждаемых газов, как правило, выше 100 °С. С целью получения более полных данных для моделирования и проектирования пенных теплообменников было предпринято исследование охлаждения воздуха водой в пенном аппарате при высокой начальной температуре воздуха (200, 300 и 400 С) и малом содержании водяного пара в охлаждаемом воздухе [165]. Определение общего вида кинетических уравнений выполнено автором теоретически с применением теории подобия, на основе предшествующих работ по гидродинамике пенного слоя и теплообмену при пенном режиме (см., например, [178, 234, 307)], а также дифференциальных уравнений распространения тепла, уравнений теплообмена на границе раздела и соответствующих краевых условий. С учетом конкретной задачи исследования получены в общем виде следующие аналитические зависимости [c.101]


    Теплообмен при кипении — это сложный и недостаточно изученный процесс. На основе сочетания данных теоретических и экспериментальных исследований с теорией подобия получены обобщенные критериальные зависимости, позволяющие с достаточной для практических целей точностью рассчитать коэффициент теплоотдачи при кипении ац. Поскольку вопросы теплоотдачи при конденсации пара освещены в предыдущей главе, ограничимся здесь кратким изложением вопросов теплоотдачи при кипении. Анализ отдельных термических сопротивлений теплопередаче в выпарных аппаратах с паровым обогревом показывает, что наибольшее значение имеет термическое сопротивление теплоотдаче при кипении Яг- Характерные особенности процесса теплоотдачи при кипении следующие. [c.197]

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]

    Учитывая изложенное выше, некоторые авторы [4] предлагают все технохимические расчеты разделить на две категории. К первой категории рекомендуется относить расчеты, связанные с физическими и в известной мере физико-химическими явлениями. Это — процессы переноса тепла и массы вещества, которые протекают без изменения химического состава рабочей среды, а именно теплообмен в нагревателях, холодильниках и других системах, характеризующихся небольшим числом критериев подобия. Расчеты таких процессов можно проводить на основе выводов теории подобия, позволяющих результаты экспериментальных данных, полученные на физических моделях, практически безошибочно переносить на аппараты заводских масштабов. [c.16]

    В книге рассматриваются основы теории, расчет и конструкции тонкослойных теплообменных аппаратов. Дается сравнительный анализ работы тонкослойных и трубчатых аппаратов, работающих без изменения агрегатного состояния жидкости, и вакуумвыпарных аппаратов, в которых жидкость меняет агрегатное состояние. Рассматривается процесс нагрева жидкости при непосредственном контакте с паром и охлаждение ее за счет самонспарения. Значительное внимание уделено примерным расчетам и выбору наиболее выгодных условий проектирования. Предложены обобщенные уравнения в критериальном виде, позволяющие производить расчет поточных теплообменных аппаратов с повышенной точностью. [c.2]

    Особенно плодотворно развивалась теплопередача, как наука, после Октябрьской революции.. Акад. М. В. Кирпичевьш и его школой на основе теории подобия была разра1ботана теория моделирования тепловых устройств, сыгравшая огромную роль в исследовании и обобщении процессов,, происходящих в теплообменных аппаратах. Благодаря работам большого коллектива советских ученых (М. Л. Михеев, А. А. Гухман, С. С. Кутателадзе, А. П. Ваничев, В. Н. Тимофеев, Г. А. Поляк и др.) созданы оригинальные методы расчета и экспериментального изучения теплообмена, которые являются наиболее передовыми в мировой науке. [c.238]

    Значительная часть экспериментальных исследований внутренней структуры пристенной турбулентности выполнена в так называемых равновесных по Клаузеру турбулентных пограничных слоях, формирующихся при безградиентном или слабоградиентном обтекании простых тел невозмущенным потоком. Для таких сдвиговых течений существуют координаты, в которых профили средней (по времени) скорости, а также нормальных и касательных напряжений, кинетической энергии турбулентности, ее диссипации и других характеристик турбулентности являются автомодельными. В то же время, решение ряда практических задач, связанных, в частности, с разработкой оптимальных конструкций каналов теплообменников, камер сгорания авиационных двигателей и других устройств, содержащих элементы двугранных углов, требует знаний о гидродинамической и тепловой структурах течения за различного рода неровностями, выступами и препятствиями, широко встречающимися в таких устройствах [1, 2]. Однако обтекание отмеченных локальных источников возмущений в общем случае относится к классу течений, формирующихся в условиях резкого изменения шероховатости поверхности [3, 4] и характеризующихся неравновесностью, нередко весьма существенной. Этот вопрос со всей остротой возникает в проточных частях реальных промышленных устройств (турбомашины, теплообменные и технологические аппараты и т.п.). Сложность обтекаемых конфигураций в таких устройствах в значительной степени определяет внутреннюю структуру пристенных течений, поэтому распределения как средних, так и пульсационных характеристик потока не являются автомодельными. При использовании полуэмпирических моделей турбулентности для анализа таких течений все чаще выражается неудовлетворенность существующими локальными подходами [51 и, в частности, гипотезой Буссинеска, которая оказывается непригодной по крайней мере во внешней части слоя. По этой причине выражается озабоченность в связи с необходимостью разработки релаксационной теории, в основе которой была бы новая формула для напряжения турбулентного трения, позволяющая учитывать память пограничного слоя, т.е. свойство сдвигового потока запоминать особенности течения выше рассматриваемой области. Не случайно при расчетах неравновесных турбулентных пограничных слоев все отчетливее стала проявляться тенденция отхода от классической формулы Буссинеска, характеризующей линейную связь турбулентных напряжений с градиентом скорости [c.255]


Библиография для ТЕПЛООБМЕННЫЕ АППАРАТЫ Основы теории теплообмена: [c.369]   
Смотреть страницы где упоминается термин ТЕПЛООБМЕННЫЕ АППАРАТЫ Основы теории теплообмена: [c.143]    [c.3]   
Смотреть главы в:

Машины и аппараты химической промышленности -> ТЕПЛООБМЕННЫЕ АППАРАТЫ Основы теории теплообмена




ПОИСК







© 2025 chem21.info Реклама на сайте