Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиморфизм и аллотропия

    Учитывая возможные случаи полиморфизма (аллотропии) металлов, все металлические системы можно подразделить на три следующие категории  [c.289]

    Полиморфизм. Аллотропия. Одно и то же вещество может образовать разные кристаллические формы. Это явление получило название полиморфизма. Сами формы (модификации) называются алло-тропическими. Очевидно, что твердое тело одного и того же состава, но содержащее разные аллотропические модификации, состоит из стольких фаз, сколько в нем модификаций. [c.21]


    Полиморфизм является наиболее частым проявлением аллотропии эле. ментов. Понятие аллотропии шире, чем понятие полиморфизма, так как относится к простым веществам независимо от их агрегатного (а не только твердого) состояния (например, кислород — озон). [c.111]

    От полиморфизма следует отличать аллотропию—явление, когда данный элемент способен существовать в виде различных простых веществ. Границы этих понятий не совпадают. Аллотропия относится и к различным кристаллическим модификациям элемента, совпадая в этом случае с полиморфизмом, и к различным по строению молекулам, различающимся по числу атомов в них (например, озон Оз и обычный кислород О2). С другой стороны, полиморфизм охватывает явления различия кристаллических форм не только простых веществ, но и химических соединений. [c.121]

    Явление аллотропии у металлов прежде всего связано с тем, что энергии кристаллических решеток различных металлических структур близки. Полиморфизм чаще всего проявляется у (1- и /-элементов (в особенности 5/), чем у 5- и р-элементов. Это обусловлено энергетической близостью (п — 1) - и П5-, пр-состояний у -элементов и близостью 5/-, М-, 75-состояний у 5/-элементов. [c.256]

    Применение высокотемпературной рентгенографии для изучения полиморфизма железа. Вся современная практика изготовления и термической обработки сталей базируется на уникальном физическом свойстве железа — его аллотропии или полиморфизме, открытом в 1868 г. Д. К. Черновым. [c.162]

    Не следует путать полиморфизм с аллотропией — явлением существования элемента в виде различных простых веществ независимо от их фазового состояния. Например, кислород О2 и озон Оз — аллотропные формы кислорода, существующие в газообразном, жидком и кристаллическом состояниях. Графит и алмаз — аллотропные формы углерода и одновременно его кристаллические модификации. Понятия аллотропии> и полиморфизма совпадают для кристаллического состояния простого вещества. [c.12]

    Используется также термин полиморфизм ( много форм ). Под этим термином часто понимают разные кристаллические структурные формы простого и сложного вещества говорят, например, о полиморфных модификациях металлов и сложных вещ,еств (Т 02, 8102 и др.). Необходимо эти два понятия — аллотропия и полиморфизм —разграничивать. Понятие аллотропия относят к модификациям простых веществ, которые образует один и тот же элемент, тогда как термин полиморфизм целесообразно применять при рассмотрении модификаций одного и того же сложного вещества (АиОз, ТЮг и др.) таким образом три понятия — аллотропия, полиморфизм и изоморфизм — получат свою логическую качественную дифференциацию. [c.33]


    Аллотропные видоизменения элементарного вещества — это вещества, молекулы которых различны, хотя и образованы атомами одного и того же химического элемента. Свойства аллотропных видоизменений одного и того же элемента, проявляемые в различных агрегатных состояниях, различны. Способность одного и того же вещества существовать в различных кристаллических формах называют полиморфизмом. Он может быть двух видов энантиотропный, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотропный, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же вещества. Монотропные полиморфные видоизменения являются, по существу, аллотропными видоизменениями в кристаллическом состоянии. Таким образом, границы понятий аллотропии и полиморфизма не вполне совпадают. Следует отметить, что во многих случаях элементарные вещества в жидком и газообразном состояниях содержат молекулы, различные как по числу атомов, так и по структуре. Относительное содержание этих различных молекул в массе элементарного вещества зависит от температуры и других условий, причем изменение этих условий обычно приводит к возврату соответствующих равновесий. В связи с этим, а также с трудностью изоляции отдельных форм молекул последние не принято считать самостоятельными аллотропными видоизменениями. Известным примером таких элементарных веществ является сера, которая в газовом состоянии содержит молекулы четырех видов — За, 5 , (цепе-) и 5 (цикло-). [c.37]

    От полиморфизма следует отличать аллотропию — явление, когда один и тот же химический элемент способен существовать в виде двух или нескольких разновидностей или модификаций, которые имеют различные внешние и внутренние признаки. Аллотропия относится к различным кристаллическим модификациям элемента, совпадая в этом случае с полиморфизмом (например, сера ромбическая и моноклинная), и к различным по строению молекулам, различающимся числом атомов в них, например, озон Оз и кислород Ог. [c.53]

    Аллотропия может быть обусловлена или различным числом атомов данного элемента в молекуле вещества, например кислород О2 и озон Оз, или различной кристаллической структурой образующихся модификаций, например олово серое и белое. Способность веществ при определенных температурах (давлениях) образовывать в твердом состоянии различные типы кристаллических структур называют полиморфизмом. Полиморфные модификации могут иметь не только простые вещества, но и соединения. Например, для 81С известно более сорока модификаций. Для обозначения аллотропных и полиморфных модификаций используют греческие буквы а, р, 7 и т. д., где а — самая низкотемпературная модификация. При нагревании до определенной температуры происходит переход к следующей модификации, которая обычно имеет менее плотную упаковку. [c.245]

    Явление аллотропии обусловлено несколькими причинами 1) образованием молекул с различным числом атомов (кислород и озон фосфор двухатомный — 2 и фосфор четырехатомный — Р4 с молекулой в виде правильного тетраэдра и т. д.) 2) образованием кристаллов различных модификаций — частный случай полиморфизма (см. углерод в виде графита и алмаза модификации серы и т. д.). [c.11]

    В чем заключается различие между полиморфизмом и аллотропией химического элемента  [c.100]

    Полиморфизм простых веществ является частным случаем аллотропии химических элементов, под которой подразумевают способность элемента существовать в различных формах (модификациях). Как понятие аллотропия шире, чем полиморфизм, охватывающий лишь изменения в структуре твердого тела. [c.125]

    Употребляются два термина, отражающих способность веществ существовать в разных формах, — аллотропия и полиморфизм. Первый относится только к простым веществам независимо от их агрегатного состояния (кислород—озон, алмаз—графит и т. п.). Второй относится только к твердому состоянию независимо от того, простое это вещество или сложное. Таким образом, эти термины совпадают для простых твердых веществ (кристаллическая сера, фосфор, железо и др.). [c.321]

    От полиморфизма и изоморфизма следует отличать аллотропию — явление, когда данный элемент способен существовать в виде различных простых веществ. [c.28]

    Формам существования Э. х. в природе соответствуют простые в-ва. Один Э. х. может существовать в виде неск. простых в-в, отличающихся друг от друга составом молекул (нанр., кислород 0-. и о.чон Oj — см. Аллотропия), типом кристаллич. решетки (см. Полиморфизм) и др. св-вами. Число известных простых в-в превышает 500. [c.707]

    Аллотропия относится только к простым веществам и рассматривает как различие в составе их молекул, так и различие в строении кристаллических решеток. Если речь идет о различии в строении кристаллических решеток простых веществ, то понятия полиморфизм и [c.6]


    Этот случай аллотропии можно рассматривать также и как полиморфизм простых веществ. [c.8]

    Сера — твердое кристаллическое вещество желтого цвета = 119°С = 445°С циклич молекулы 83 пары 8д 85 8, 82 аллотропия (полиморфизм) [c.26]

    Полиморфизм постоянно встречается среди минералов. Например, арагонит и кальцит являются различными полиморфными модификациями карбоната кальция СаСОз. Аллотропия многих простых веществ также имеет в своей основе явление полиморфизма (аллотропия железа, серы, фосфора, олова и др.). [c.49]

    Поскольку металлическая связь ненасыщаема и ненаправлена, мета. лы имеют координационные решетки с максимально плотной упаковкой. Как указывалось выше (см. рис. 65), для металлических простых веществ самых разнообразных по химической природе элементов наиболее типичны три типа кристаллических решеток кубическая гранецентрированная (к. ч. 12), гексагональная (к. ч. 12) и ку()ическая объемноцентрированная (к. ч. 8). Для большинства металлов характерна аллотропия. Это прежде всего связано с тем, что энергии кристаллических решеток различных металлических структур близки. Полиморфизм чаще проявляется у ii- и /-элементов (в особенности 5/), чем у S- и р-элементов. Это обусловлено энергетической близостью п — 1) d-, ns-, пр-состояний у ( -элементов и близостью 5/-, bd-, 7з-состояний у 5/-элементов. [c.233]

    Аллотропные видоизменения элементарных веществ представляют собой вещества, построенные из различных молекул (или кристаллов), образованных атомами одного и того же химического элемента. Аллотропные видоизменения одного элемента имеют различные свойства, проявляемые в различ.чых агрегатных состояниях. Наряду с аллотропией известно также явление полиморфизма— способности одного и того же вещества существовать в различных кристаллических формах. Полиформизм может быть двух видов э н а и т и о т р о п и ы й, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотроп-н ы й, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же [c.111]

    Аллотропия может быть обусловлена или различным числом атомов данного элемента в молекуле этого вещества, например кислорода О2 и озона Оз, или различной кристаллической структурой образующихся модификаций, например алмаза и графита. Способность веществ при определенных температурах (давлениях) образовывать в твердом состоянии различные типы кристаллических структур называют полиморфизмом. К образованию полиморфных модификаций способны не только простые вещества, но и соединения например, А12О3 имеет девять модификаций. Аллотропные и полиморфные модификации обозначают греческими буквами а, р, у и т. д., где а — самая низкотемпературная модификация. Низкотемпературные модификации обычно имеют наиболее плотную упаковку атомов в кристаллах. При нагревании осуществляется переход их. к более рыхлой структуре, при этом возрастает неупорядоченность в кристалле (А5> 0) и появляются новые кристаллические структуры.  [c.224]

    Для углерода (аморфный углерод, графит, алмаз), фосфора (белый, фиолетовый, желтый, черный), серы (ромбическая, моноклинная, полимерная) эти понятия совпадают. Для кислорода в твердом срстоянии известно три типа кристаллов с температурами перехода между ними —229 и —249°С. Это также ттроявление полиморфизма. Но существование кислорода в двух различных молекулярных формах Ог и Оз (озон) выходит за рамки полиморфизма и является аллотропией. [c.97]

    Полиморфизмом могут обладать не только простые вещества, но и соединения, ярким примером которых может служить лед, имеющий в зависимости от давления свыше 7 модификаций или хлорид аммония NH4 I, который может кристаллизоваться по типу Na l (см. рис. 7.13) или s l (см. рис. 7.14). Полиморфизм является частным случаем аллотропии (последняя включает в себя еще возможность варьирования состава молекул, как, например, О2 и Оз или модификации серы и др.). [c.155]

    Термином сложные химические соединения определяют хи. шче-ские индивиды, содержащие три и более компонентов. Если простых веществ (с учетом аллотропии и полиморфизма) насчитывается около 200, а бинарных соединении — порядка 10 ООО, сложных многокомпонентных соединений значительно больше. Традиционно эти объекты подразделяют на 3 класса основания, кислоты и соли. В эту же классификацию обычно включают и комплексные соединения, поскольку существуют, например, комплексные кислоты (HJPt lel), комплексные основания ([Ag (ЫНз)210Н) и комплексные [c.79]

    Вещества, состоящие из атомов какого-либо одного элемента, независимо от агрегатно о состояния, называются простыми веществами. Для некоторых элементов известно несколько аллотропныч модификаций. Они различаются или кристаллическо решеткой — аллотропия формы (белый и красный оосфор), или составом молекул — аллотропия состава (кислород Ог и озон Оз). Для простых кристаллических веществ явление аллотропии отождествляется с полиморфизмом. [c.4]

    Классификация сложных соединений. Термином сложные химические соединения определяют химические индивиды, содержащие три элемента и более. Если простых веществ (с учетом аллотропии и полиморфизма) насчитывается около 200, а бинарных соединений — порядка 10 ООО, то сложных химических соединений значительно больше. Традиционно эти объекты подразделяются на три класса основания, кислоты и соли. В эту же классификацию обычно включают и комплексные соединения, поскольку существуют комплексные кислоты, комплексные основания и комплексные соли. Однако уже среди комплексных соединений встречаются такие, которые невозможно отнести ни к одному из перечисленных классов. Таковы, например, карбонилы металлов, многие хелаты и внутрикомплексные соединения. Таким образом, уже применительно к комплексным соединениям приведенная классификация не является полной. Но существуют сложные соединения, которые не относятся и к комплексным, хотя их также нельзя рассматривать в рамках данной классификации. В частности, такие соединения, как Сс18пА82, 2пСеР2, СиГеЗг и т.п., невозможно отнести к солям, в том числе и комплексным. Причиной неуниверсальности этой классификации служит то, что она охватывает только объекты, в которых существенная роль принадлежит преимущественно ионной связи между структурными элементами. Отсюда, в частности, вытекает принципиальная возможность электролитической диссоциации в водных растворах с разрывом преимущественно ионной связи по одному из трех типов кислотному, основному или "солевому". [c.280]

    АЛЛОТРОПИЯ, явление существования хим. элемента в виде двух или неск. простых в-в, различных но строению и св-вам (т. н. аллотропных форм). М. б. обусловлено образованием молекул с разл. числом атомов (напр., О2 и Оз) или разной структурой кристаллов (напр., графит и ал14аз). В последнем случае А.— разновидность полиморфизма. [c.26]

    ПОЛИМОРФИЗМ, способность твердых в-в и жидких кристаллов существовать в двух или неск. формах с разл. кристаллич. структурой и св-вами. Такие формы наз. полиморфными модификациями. Взаимные превращения этих модификаций наз. полиморфными переходами. П. простых в-в принято наз. аллотропией, но понятие П. не относится к некристаллич. аллотропным формам (напр., газообразным Оз и Оз). [c.464]

    О2 и озон О3), типом кристаллич. решетки (напр., модификации углерода - фафит, алмаз, карбин) или др, св-вами. Это явление наз. аллотропией, в случае углерода аллотро пия - разновидность полиморфизма. Число известных ныне простых в-в превышает 500. Поскольку определяющим признаком Э. X, служит заряд ядра, то в хим. р-циях элемент сохраняет свою индивидуальность происходит лишь перераспределение электронов внешних электронных оболочек атомов, тогда как атомные ядра остаются неизменными. Каждый Э. X. характеризуется степенями окисления, к-рые могут проявлять атомы данного элемента в хим. соединениях. [c.472]

    Термином полиморфизм мы будем пользоваться как для сложных, так и для простых веществ, не вводя для последних специального тершша аллотропия. [c.219]

    Элемент (или соединенне) называют полиморфным, если он (оно) образует две или более кристаллические фазы, различающиеся атомным расположением. Более ранний термин аллотропия используется и сейчас для того, чтобы обозначить различные формы элементов но, за исключением особого случая Оа II Оз, аллотропы являются просто полиморфными модификациями. Полиморфизм элементов и соединений — скорее правило, чем исключение, и структурная химия любого элемента или соединения включает структуры всех его полиморфных модификаций, точно так же как понятие молекулы включает структуры ее изомеров. Различия между структурами полиморфных модификаций колеблются от таких очень незначительных, как изменение ориентации молекулы или иона от фиксированной до произвольной (или полного вращения) в высокотемпературной форме вещества (примерами могут служить кристаллический НС1, соли, содержащие NH4+, NO3 , N и другие сложные ионы) или как - -изменения форм Si02, до таких больших различий, как перестройка всего кристалла (полиморфные модификации С, Р, Si02 и т. д.). [c.20]

    Полиморфизмом называется способность вещества одного и того же состава существовать в зависимости от внешних условий в нескольких кристаллических формах (полиморфных модификациях) с разлячной структурой (для простых веществ это явление иногда называют аллотропией). [c.43]


Смотреть страницы где упоминается термин Полиморфизм и аллотропия: [c.112]    [c.224]    [c.145]    [c.26]    [c.33]    [c.115]    [c.142]    [c.314]   
Смотреть главы в:

Качественный анализ -> Полиморфизм и аллотропия




ПОИСК





Смотрите так же термины и статьи:

Аллотропия

Аллотропия. Полиморфизм. Классификация простых веществ

Полиморфизм



© 2025 chem21.info Реклама на сайте