Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алмаз модификации

    Существенные изменения претерпевает вещество при высоких внешних давлениях. Так, при давлениях порядка 10 —10 Па уменьшаются расстояния между атомами в кристаллической решетке, разрушаются химические связи. При этом создаются условия для возникновения новых связей, соответствующих более плотной кристаллической структуре вещества. Широко известными примерами подобного рода полиморфных превращений при сверхвысоком давлении является переход графита в алмаз, нитрида бора в боразон, кварца в новую модификацию (стишовит) с плотностью, на 60% большей, чем у природного кварца, и др. В настоящее время возможность таких полиморфных превращений начинает широко использоваться в технике для получения синтетических твердых и сверхтвердых веществ.  [c.124]


    НЫХ И более твердых модификаций вещества, например превращение графита в алмаз (с. 394), нитрида бора в боразон (с. 440) и т. д. [c.204]

    В другой модификации нитрида бора боразон или эльбор) атомы бора и азота находятся в состоянии хр -гибридизации. Эта модификация имеет кристаллическую решетку типа алмаза (см, рис. 166, а). Она образуется из гексагональной ири высоком давлении порядка [c.440]

    На этой диаграмме сплошные кривые отражают температуры фазовых и полиморфных переходов с изменением давления в системе, пунктирная кривая В определяет плавление алмаза, ОС — плавление графита. Кривая аО определяет температурный переход графита в алмаз. Кривая 1т определяет полиморфный переход алмаза в металлический углерод. Остальные обозначения даны в подписи к рисунку. На диаграмме даны две тройные точки графит—алмаз—жидкий углерод — 1 и металлическая модификация—алмаз—жидкий углерод—2. [c.176]

    Ближайшие соседи углерода по группе периодической системы— кремний, германий и олово (в модификации серого олова) кристаллизуются в решетке алмаза. Однако- при нарастании металличности соответственно изменяется характер связи. [c.132]

    Для углерода недостаточно применять обозначение (кр.), поскольку кристаллический углерод может существовать в двух различных модификациях -в виде алмаза или графита.] Требуется выяснить, будет ли в этой реакции выделяться теплота, которую следует учесть при конструировании реактора. Подобный синтез никогда не проводился (и, по-видимому, никогда не будет осуществлен), но тем не менее можно получить ответ на поставленный вопрос, используя данные о теплотах некоторых легко осуществляемых реакций. Теплотой сгорания вещества, содержащего С, N, О и Н, называется теплота реакции данного вещества (в расчете на его одномолярное количество) с достаточным количеством кислорода, продуктами которой являются СО2, N2 и жидкая Н2О. Теплоты сгорания легко поддаются измерению и исторически были первыми теплотами реакций, измерявшимися и табулируемыми систематически. Подробные таблицы теплот сгорания можно найти в специальных термохимических справочниках. Теплоты сгорания метана и алмаза равны [c.92]

    Явление аллотропии обусловлено несколькими причинами 1) образованием молекул с различным числом атомов (кислород и озон фосфор двухатомный — 2 и фосфор четырехатомный — Р4 с молекулой в виде правильного тетраэдра и т. д.) 2) образованием кристаллов различных модификаций — частный случай полиморфизма (см. углерод в виде графита и алмаза модификации серы и т. д.). [c.11]


    АЛМАЗ, модификация углерода, кристаллизующаяся в гранецентрированной кубич. системе Ср 6,11 Дж/(моль-К) [c.26]

    Нитрид бора. Из прочих соединений бора замечателен его нитрид ВЫ. Обычная его модификация имеет строение и свойства графита она мягка и легко расслаивается на чешуйки. Она и является изостером графита графит превратился бы в нитрид бора, если бы из ядер одних атомов углерода по одной единице положительного заряда переместилось в ядра соседних атомов углерода. Как при сверхвысоких давлениях графит превращается в алмаз, так обычный нитрид бора при подобных же условиях превращается в другую, структурно подобную алмазу модификацию, названную боразоном. [c.605]

    При повышении давления равновесия смещаются в сторону образования веществ, обладающих меньшим объемом, т. е. в состояние с большей плотностью, что большей частью сопровождается увеличением их твердости. Повышение давления вызывает эффекты, в некоторых отношениях обратные тем, которые наблюдаются при повышении температуры. Так, при повышении температуры увеличивается объем, а при повышении давления он уменьшается при повышении температуры возрастает энтропия, а при повышении давления обычно она уменьшается. Часто наблюдается, что переход в форму устойчивую при более высоком давлении повышает металличность и степень симметрии кристалла. В области высоких давлений часто наблюдается переход веществ в такие кристаллические формы, которые не устойчивы или даже не существуют при обычных давлениях. Так, лед при высоком давлении, начиная примерно с 2000 атм, может существовать (в зависимости от сочетания температуры и давления) в нескольких различных кристаллических формах, не существующих при обычных давлениях. Все эти формы обладают большей плотностью, чем обычный лед. Например, плотность льда VI почти в полтора раза больше плотности обычного льда. Подобно этому желтый фосфор, обладающий в обычных условиях плотностью 1,82 г/сл1 , переходит- при высоких давлениях в черный фосфор с плотностью 2,70 г/сж серое олово (а = 8п, структура алмаза, плотность 5,75 з/с ), являющееся неметаллическим веществом, переходит в белое металлическое олово (Р=8п, тетрагональная структура, плотность 7,28 г/слг ) желтый мышьяк (плотность 2,0 г/см ) переходит в металлическую модификацию с плотностью 5,73 г/б .и . При высоких давлениях алмаз ( = 3,51 г/см ) становится более устойчивой формой, чем графит ( = 2,25 г/см ), хотя при обычных давлениях эти соотношения обратны. [c.241]

    Однако к этому классу относятся не только линейные полимеры, но и соединения с плоско и пространственно связанными атомами, например красный и черный фосфор, аморфная сера, алмаз, модификации 3102, некоторые формы пятиокиси фосфора и многие другие вещества. В одной статье невозможно щироко охватить химию всех этих соединений, поэтому в данном случае рассмотрены в основном высокомолекулярные фосфаты и силикаты. Именно эти вещества обладают некоторыми свойствами, присущими многим другим неорганическим высокомолекулярным соединениям. [c.14]

    В промышленности широко используется твердый углерод, который может существовать в форме трех различных модификаций при изменении Р и Г в системе графит, алмаз и плотная металлическая модификация, что показано на диаграмме, приведенной на рис. 41. [c.174]

    Решетке алмаза подобен структурный тип сфалерита — одной из модификаций ZnS (рпс. 1.86а). Структуру этого вещества можно получить из структуры алмаза, если половину атомов углерода в решетке алмаза заменить атомами Zn, а другую половину — атомами S (см. рнс. 1.86а н 1.85). Структурный [c.148]

    Структура свободного кремния аналогична алмазу. Графитоподобная модификация неизвестна. Кремний — типичный полупро- [c.136]

    Символ С модификации алмаз, графит. [c.151]

    В работе приводятся эталонные спектры КРС известных полиморфных модификаций углерода и спектры КРС полученных продуктов. На основании сравнения и анализа этих спектров делается вывод о том, что в гидротермальных растворах в зависимости от физико-химических условий опытов образуются следующие фазы углерода графит, разупорядоченный углерод и алмаз, а также модификации углерода типа фуллеренов С , где п < 60 - 70 по спектрам КР. [c.114]

    Номенклатура различных модификаций еще не унифицирована в должной степени. Многие из них, известные давно, носят различные названия, присвоенные им ранее, например алмаз и графит, кварц, кристобаллит и [c.121]

    Однако молекула j имеет избыточные орбитали и недостаточное для их заполнения число электронов, поскольку вокруг каждого ее атома недостает электронов для завершения октета. Каждый атом углерода обладает тенденцией к образованию четырех двухэлектронных связей, как это видно на примере двух его основных аллотропных модификаций - алмаза и графита (рис. 14-5). По аналогичной причине Sij также является электроннодефицитной системой, которая не существует в виде индивидуальных молекул в кристаллическом кремнии. Структура кристаллического кремния скорее напоминает структуру алмаза (рис. 14-5,а). [c.603]


    Карбид кремния Si (карборунд), подобно углероду и кремнию, существует в виде кубической (алмазоподобной) и гексагональной модификаций. В чистом виде алмазоподобный S — диэлектрик, но с примесями становится полупроводником (Д = 1,5—3,5 эВ) с п-пли / -проводимостью. Он тугоплавок (т. пл. 2830°С), по твердости близок к алмазу, химически весьма стоек. Разрушается лишь при нагревании в смеси HF + HNOg и при сплавлении со щелочами в присутствии окислителя, например  [c.420]

    Алмаз имеет кубическую решетку, построенную из сочетания тетраэдров, плотно упакованных в куб. По сравнению с графитом решетка алмаза более напряжена и это определяет более высокую устойчивость последней модификации при обычных условиях. Переход алмаза в графит при обычных условиях заторможен кинетическими факторами. [c.175]

    В соответствии с различием в кристаллической структуре (в особенности в типах химической связи) полиморфные модификации различаются (иногда очень резко) по своим физическим свойствам — плотности, твердости и пластичности, электрической проводимости и пр. Так, графит черного цвета, непрозрачен, проводит электрический ток алмаз — прозрачен, электрический ток практически не проводит. Графит—мягкое вещество, а алмаз — самое твердое из всех известных природных веществ плотность графита 2,22 г/см , алмаш 3,51 г/см . Полиморфные модификации отличаются, иногда очен11 заметно, и по своей химической активности. [c.111]

    У кремния наиболее устойчива алмазоподобная модификация. Как и алмаз, она тугоплавка и отличается высокой твердостью. Вследствие частичной делокализации связи кремний имеет темносерый цвет и похож на металл. Графитоподобная модификация кремния неустойчива. [c.188]

    В условиях высоких давлеиия и температуры (6,0 4-8,5 ГПа, 15001800°С) гексагональный нитрид бора переходит в кубическую алмазоподобную модификацию (бесцветные неэлектропроводные кристаллы). Ее технические названия эльбор и кубонит (СССР), боразон (США). Это вещество широко используется в качестве сверхтвердого материала, оно лишь немного уступает по твердости алмазу, но значительно превосходит его по термостойкости— выдерживает нагревание на воздухе до 2000 °С (алмаз сгорает при 800 °С). В кубическом ВЫ, как и в алмазе, окружение атомов тетраэдрическое (хр -гибридизация). Одна из связей в кубическом ВЫ донорно-акцепторная, она образуется за счет неподеленной электронной пары N и свободной квантовой ячейки В. [c.334]

    Алмаз, так же как и графит, по своему химическому составу представляет собой чистый углерод. Они являются полиморфными модификациями одного и того же элемента, однако свойства их резко различаются. Это объясняется различием их кристаллических решеток. [c.43]

    Наряду с этим, как уже отмечалось в 29, одно и то же вещество часто оказывается способным существовать в нескольких различных кристаллических формах, называемых также модификациями. Само явление это называется полиморфизмом. Примером его могут служить алмаз и графит, являющиеся различными кристаллическими формами углерода, или кварц, тридимит и кри-стобаллит —различные кристаллические формы кремнезема. [c.121]

    АЛЛОТРОПИЯ — способность химич. элемента существовать в виде двух И.ЛИ большего числа простых веществ. Явление А. обусловлено 1) образованием мо.локул с различным числом атомов (кислород О2 и озон О3 модификации жидкой серы — с молекулами в виде 8-членных колец и — с молекулами в виде цепочек из шести атомов фосфор 2-атом-ный Р2 и фосфор 4-атомну.1Й Р4 — с молекулой в виде правильного тетраддра и т. д.) 2) образованием кристаллов раз,]П1чных модификаций — частный случай полиморфизма [углерод в виде графита и алмаза модификации твердой соры ромбическая (S ) и моноклинная (Sp) олово серое и белое железо а, у, 6 и т. д. ]. [c.67]

    Простые вещества. В ряду Ое—5п—РЬ отчетливо усиливаются металлические свойства простых веществ. Германий — серебристо-белый с желтоватым оттенком, внешне похож на металл, но имеет алмазоподобную решетку. Олово полиморфно. В обычных условиях оно существует в виде 8-модификацни (белое олово), устойчивой выше 13,2°С это — серебристо-белый металл, кристаллическая решетка его тетрагональной структуры с октаэдрической координацией атомов. При охлаждении белое олово переходит в -модификацию (серое олово) со структурой типа алмаза (пл. 5,85 г/см ). Переход (3-> -сопровождается увеличением удельного объема (на 25,6 %), в связи с чем олово рассыпается в пороиюк. Свинец — темно-серый металл с типичной для металлов структурой гранецентрированного куба. [c.422]

    Энтальпия и внутренняя энергия образования простых веществ, согласно приведенному определению, равны нулю. Если элемент образует несколько простых веществ (гра(11ит и алмаз, белый и красный фосфор и т. п.), то стандартным считается состояние злег,1бнта в виде наиболее устойчивой при данных условиях модификации (например, при обычных условиях— графит в случае углерода, Оо в случае кислорода и т. д.) энтальпия и внутренняя энергия образования этой, наиболее устойчивой модификации принимаются равными нулю. [c.75]

    В периодической системе нет резкой границы между элементами с металлической структурой и элементами с ковалентной каркасной структурой (рис. 14-8). Это видно из того, что кристаллы некоторых элементов обладают свойствами, промежуточными между проводниками и изоляторами. Кремний, германий и а-модификация олова (серое олово) обладают кристаллической структурой алмаза. Однако межзонная щель между заполненной и свободной зонами в этих кристаллах намного меньше, чем для углерода. Так, ширина щели для кремния составляет всего 105 кДж моль (Как мы уже знаем, для углерода она равна 502 кДж моль .) Для германия ширина межзонной щели еще меньше, 59кДж моль а для серого олова она лишь 7,5 кДж моль Ч Металлоиды кремний и германий называются полупроводниками. [c.631]

    М. X. Карапетьянц показал хорошую применимость этого ме тода сопоставленпя к большому числу веществ в кристаллическом состоянии, включая многие простые вещесра, окислы, сульфиды, галогениды и др. Рис. V, 5 иллюстрирует наблюдаемые соотно шения при сопоставлении температур, отвечающих одинаковым значениям теплоемкостей (Ср) алмаза, кремния, германия и олова (в а-модификации). Здесь в качестве эталонного вещества принят кремний. Для каждого из этих веществ зависимость имеет линейный характер, причем все прямые пересекаются практически в одной точке. Это объясняется тем, что все рассматриваемые вещества обладают кубической решеткой алмаза. Для свинца же, обладающего кубической гранецентрированной решеткой, такая [c.205]

    При этих давлениях равновесие смещено в сторону алмаза. Следовательно, при повышенных давлениях можно смещать равновесие в сторону алмаза, а повышение температуры позволит преодолеть кинетические препятствия синтезу алмаза и графита. В промышленных условиях в настоящее время синтезируют алмазы при повышенных давлениях и температуре из технического углерода. В работе Банди (Bundy F. Р. S ien e, 1962, р. 137, р. 1067) была построена диаграмма превращения углерода в различные модификации с использованием Р, 7-плоскости (см. рис. 41). [c.176]

    В последнее время исследователи все больше начинают рассматривать различные модификации углерода как полимеры так, они представляют алмаз как пространствеиный иолиме[), в отличие от слоистого полимера графита, существующего как бы в двух измерениях. Карбин — третья модификация углерода, открытая советскими учеными [55], представляет собой полимер линейного строения с чередующимися одинарными и тройными связями (—С = С—С = С—) , где п может достигать 100 и более. Прочность связей в карбпие в результате эффекта сопряжения превышает прочность связей, существующих в кристаллах алмаза и графита, что весьма осложняет его получение. [c.51]

    Родоначальник подгруппы — углерод (лат. сагЬопеит) существует в свободном виде в двух аллотропных модификациях — графит и алмаз,— резко различающихся по строению и свойствам (см. ниже). Углерод — один из важнейших элементов в природе. Его соединения составл.чгот основу живей природы — флоры и фауны. [c.130]

    Полиморфизм — это способность вемкств существовать в виде двух или нескольких кристаллических структур. Примером полиморфизма являются аллотропные тформы углерода алмаз, графит и карбин. Графит имеет слоистую, карбин — цепную, а алма — координационную решетку. Разные кристаллические структурные формы вещества называют полиморфными модификациями. [c.95]

    Полиморфные модификации часто отличаются и типом химической связи. Так, в алмазе и в цепочке карбина связи ковалентные, в графите внутри слоя — ковалентно-металлические, а между слоями — межмолекулярные. [c.95]

    Одно и то же вещество может принимать различные так называемые аллотропические модификации кислород и озон, графит и алмаз. С аллотропией тесно связано свойство полиморфиз.ма, когда в зависимости от изменения внешних условий вещество может последовательно находиться в нескольких кристаллических состояниях пояи.морфных модификациях) с различной структурой. [c.53]

    Рассмотрены результаты исследований и разработок академических, отраслевых, учебных институтов и лабораторий в области получения и переработки порошков и монокристаллов алмаза, фуллеренов и углеродных нанотрубок, высокотемпературных композитов на основе карбидов. Приведены примеры коммерческого применения наноалмазов детонационного синтеза для гальванических покрытий на основе Аи, Ag, Сг, Ni и др., использования наноалмазов для создания полимерных композитов, модификации жидких, консистентных и твердых смазок. Обсуждены методы получения и диагностики алмазоподобных углеродных пленок и сверхрешеточных структур. [c.22]

    Энергия плазменных колебаний валентных электронов в трех аллотропных модификациях углерода отличается [1] для алмаза Шр=34 эВ, для графита С0р=27 эВ. Для третьей аллотропной формы - карбина - энергия (а-иг)-плазмона, полученная в разньп( работах [1-2], различна (22-24 эВ). Однако для ряда карбнноидов из рентгенофотоэлектронных спектров ls-лннии углерода с плазменным сателлитом нами получено значение энергии плазмона 20.6+0.4 эВ. [c.47]


Смотреть страницы где упоминается термин Алмаз модификации: [c.111]    [c.151]    [c.394]    [c.396]    [c.411]    [c.356]    [c.188]    [c.75]   
Основы общей химии Том 2 (1967) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Алмаз



© 2025 chem21.info Реклама на сайте