Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения с фосфором, углеродом и кремнием

    Гетероцепные соединения образуются обычно таким образом, что между отдельными атомами того или иного элемента включаются атомы другого элемента. Чаще всего включаются в эти гетероцепные соединения бор, углерод, кремний, азот, фосфор, кислород, сера, селен и мышьяк. Наиболее многочисленной группой среди них являются кислородные соединения — полимерные окислы, азотистые соединения — полимерные нитриды, углеродистые соединения — полимерные карбиды и борные соединения — полимерные бориды. [c.334]


    Марганец широко распространен в природе. Его среднее содержание в земной коре 0,1% [414], а в золе советских нефтей 0,02—0,14% [415]. По своим химическим свойствам он несколько сходен с железом. Известны соединения, в которых его валентность равна 2, 3, 4, 6 и 7. Наиболее устойчивы соли двухвалентного марганца, а среди кислородных соединений — двуокись марганца. При нагревании он легко взаимодействует с галогенами, серой, фосфором, углеродом кремнием, бором, азотом. В канале угольного электрода окислы и карбонат марганца быстро, сульфиды медленнее восстанавливаются до металла. [c.236]

    Гетероцепные соединения образуются таким образом, что между отдельными атомами одного элемента включаются атомы другого элемента. Чаще других образуют гетероцепные соединения бор, углерод, кремний, азот, фосфор, кислород, сера, селен и мышьяк [28]. [c.421]

    Уэллс коротко, но в достаточной степени касается общих вопросов структурной химии, а именно — характера связи между атомами, величины радиусов, валентных углов, симметрии кристаллов, экспериментальных методов, при помощи которых получаются необходимые данные для определения структуры вещества, а затем излагает пространственное строение ряда классов соединений — гидридов, галогенидов, соединений кислорода, серы, азота, фосфора, углерода, кремния и бора. В последних главах рассматривается химическая структура металлов и сплавов. [c.5]

    Нуклеофильное замещение. В органической стереохимии известно вальденовское обращение, т. е. изменение стереохимиче-ского окружения атома углерода (КЧ = 4) посредством нуклеофильной атаки, например, алкилгалогенидов гидроксид-ионами. Многие реакции с участием неорганических молекул протекают по этому механизму [44]. Напротив, диссоциативный механизм реакций с образованием промежуточных карбониевых ионов неизвестен для соединений аналогов углерода — кремния и германия, а также для фосфора и др. Это различие приписывается наличию d-орбиталей у атомов этих элементов. [c.170]

    Ядами для железохромовых катализаторов конверсии СО являются сероорганические соединения, сероводород, а также соединения фосфора, мышьяка, кремния, хлора. Отрицательно на работе катализатора сказывается присутствие пыли, технического углерода. Наиболее распространенными каталитическими ядами являются сернистые соединения. Сероводород, присутствующий в исходном газе или образующийся в результате превращения сероорганических соединений (органические соединения серы в присутствии железохромового катализатора реагируют с водяным паром, образуя сероводород), реагирует с катализатором по реакции [c.138]


    Водородистые соединения неметаллов способны замещать свой водород (полностью или частично) на галогены. Такими свойствами обладают водородистые соединения азота, фосфора, углерода, кремния, германия, бора. [c.165]

    В-пятых, данный справочник содержит весь фактологический материал школьного курса химии (раздел 10). Охарактеризованы химические свойства и получение неорганических веществ для металлов (натрий, калий, кальций, алюминий, железо) и неметаллов (водород, хлор, кислород, сера, азот, фосфор, углерод, кремний). Приведены необходимые и достаточные наборы уравнений реакций с участием простых веществ, оксидов, гидроксидов, солей и бинарных соединений указанных металлов и неметаллов. Отдельно выделены способы синтеза этих веществ в лаборатории и в промышленности, качественные реакции их обнаружения. [c.6]

    Элементы, расположенные в правой верхней части периодической таблицы, характеризуются свойством присоединять электроны и заполнять свои внешние электронные оболочки. Эти элементы, к которым относятся и галогены, обладают довольно высокой электроотрицательностью и образуют много имеющих ва кное значение соединений с другими элементами. Называют эти элементы неметаллами (рис. 125). Выше ун е говорилось об азоте и инертных газах более подробно рассмотрены кислород и галогены. В этой главе рассматриваются свойства, реакции и некоторые соединения неметаллов — углерода, кремния, серы, азота и фосфора. [c.165]

    Лантаноиды взаимодействуют с галогенами, а при нагревании — с азотом, серой, углеродом, кремнием, фосфором, водородом. С большинством металлов они дают сплавы. При этом часто образуются интерметаллические соединения. [c.643]

    Процесс превращения металлического сырья в сталь заключается в уменьшении содержания в нем углерода, кремния и марганца и полном удалении таких примесей как сера и фосфор (П). Это достигается окислением этих компонентов до соединений, образующих газообразную или жидкую, отделяющуюся от металла, фазу (шлак)  [c.75]

    Фосфор, МЫШЬЯК, углерод, кремний, бор образуют с Fe, Со и Ni разнообразные по составу соединения фосфиды, карбиды, силициды. [c.396]

    Фосфор является электронным аналогом амта, одиако наличие во внешнем электронном слое атома свободных rf-орбиталей обусловливает различие свойств соединений фосфора и азота. Это различие аналогично тому, которое наблюдается мри переходе от углерода к кремнию, и связано с образованием донорно-акцепторных Я-связей между атомами фосфора и донорами электронных пар, в частности, кислородом. Поэтому при переходе от N к Р прочность связей Э-Н вследствие увеличения размера атома снижается, а связи Э-0 значительно упрочняются. [c.413]

    В настоящее время число органических соединений превысило 4 млн., тогда как соединений всех остальных элементов во много раз меньше. Многочисленность органических соединений обусловлена главным образом исключительной способностью атомов углерода соединяться друг с другом, образуя устойчивые линейные и разветвленные цепи и циклы, а также с большинством элементов периодической системы (водородом, кислородом, азотом, галогенами, серой, фосфором, мышьяком, кремнием и др.). [c.13]

    При нагревании непосредственно соединяется с галогенами, серой, азотом, фосфором, углеродом и кремнием. Причем соединение с галогенами, азотом и фосфором сопровождается горением  [c.337]

    Характер соединений, возникающих при образовании сплавов металлов, зависит от расположения компонентов в периодической системе Д. И. Менделеева. В соединения с металлами могут вступать не только металлы, но и неметаллы с относительно низкой электроотрицательностью (ЭО), такие, как углерод, кремний, бор, азот, фосфор, сера и даже кислород. [c.278]

    Фосфор получают из фосфорита пли апатита. Восстановителем фосфора со степенью окисления +5 из его соединений служит углерод. Но чтобы образовавшийся фосфор не взаимодействовал с кальцием, V прибавляют оксид кремния (IV). [c.356]

    Широко применяемой калориметрической методикой определения энтальпий образования является сожжение вещества в калориметрической бомбе в атмосфере кислорода. По этой методике были определены, например, энтальпии образования многих оксидов (углерода, кремния, бора, фосфора, серы, магния, алюминия, титана, кобальта и др.) и энтальпии образования ряда соединений, таких, как, например, карбиды, фосфиды, нитриды, фазы переменного состава и т. д. Особенно широко она [c.32]

    В разбавленных соляной и серной кислотах марганец растворяется с образованием солей марганца (И) (МпС1г, Мп304) азотной и концентрированной серной кислотами марганец окисляется (в той или другой степени) с образованием солей, соответствующих высшим степеням окисления. При повышенной температуре марганец вступает в соединение со всеми неметаллами (галогенами, серой, азотом, фосфором, углеродом, кремнием), а с большинством металлов образует сплавы разного состава. В соединениях марганец проявляет степени окисления от 4-2 до +7. На примере этих соединений можно видеть, как влияет изменение степени окисления элемента на свойства окси-ДОВ 1- и ,1 [c.148]

    Сульфиды V аналитической группы, так же как окислы, нитриды, карбиды, фосфиды и другие подобные соединения общей формулы Э Р , где Р — кислород, сера, азот, фосфор, углерод, кремний и т. д., а Э — любой элемент, например медь, ртуть, мышьяк, олово и т. д., обладают либо основными, либо кислотными свойствами. Так, основными свойствами обладают uS, dS, SnS, а кислотными свойствами обладают HgS, AS2S3, SnS2. [c.262]


    Соединения азота с водородом, галогенами и серой рассмотрены уже выше. Соединения азота с кислородом относятся к типу окислов (см. гл. VII) и здесь приводиться не будут. Поэтому в данном параграфе будут рассмотрены соединения азота с фосфором, углеродом, кремнием и бором. В соответствии с правилом Таммана, азот не должен образовывать соединения с фосфором или же такие соединения должны быть весьма непрочными. Действительно, пока установлено лишь одно соединение азота с фосфором P3N5. Это соединение может быть получено при взаимодействии сульфида фосфора P2S5 с аммиаком при высокой температуре и при избытке последнего. Если сульфид фосфора продолжительное время нагревать при температуре 850° С в токе аммиака, то происходит реакция  [c.134]

    Марганец проявляет довольно высокую химическую активность. При нагревании он взаимодействует с кислородом, галогенами, серой, азотом, фосфором, углеродом, кремнием и другими неметаллами с образованием соответствующих бинарных соединений. Мадганец не реагирует с водородом. [c.545]

    К обширному классу эле.менторгаиических соединений относятся многочисленные соединения фосфора, кремния, бора, а также металлов — металлоорганические соединения. Следует подчеркнуть, что к последнему классу относятся только такие соединения, в которых атомы металлов непосредственно связаны с атомами углерода. Алкоксиды и ароксиды (алкоголяты, гликоляты, глнцераты, феноляты) металлов, соли органических кислот, сложные эфиры металлсодержащих кислот и т. п. не относятся к металлоорганическим соединениям. [c.143]

    Как уже указывалось, титан способен взаимодействовать с углеродом лишь при высоких температурах. В системе титан — углерод при этих условиях образуются очень твердые сплавы, содержащие карбид титана Т1С — кристаллическое металлоподобное вещество с температурой плавления 3140°С, и ряд твердых растворов. Карбид титана проводит электрический ток, легко сплавляется с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре карбид титана довольно инертен, при высоких же температурах ведет себя подобно элементарному титану — реагирует с галогенами, кислородом, серой, азотом, а таклсе с кислотами и солями — окислителями с образованием продуктов, аналогичных получающимся при действии на элементарный титан. Подобные карбиду соединения титан образует с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.270]

    Анализ этих материалов выполняют из отдельных навесок. В зависимости от вида металла определяют различные компоненты. Так, в чугунах и углеродистых сталях обязательно определяют содержание углерода методом сожжения пробы в токе кислорода при 1400 °С с последующим измерением объема образовавшегося СО2. Соединения серы определяют сожжением пробы в токе кислорода при 1400 °С и последующим титрованием образовавшейся сернистой кислоты раствором иода. Марганец определяют персульфат-серебряным методом, а кремний — гравиметрическим или фотоколориметрическим методом. Соединения фосфора определяют фотоколориметрическим методом по синей окраске фосформолибденового комплекса. [c.204]

    Названия соединений элементов с элементами групп VA, IVA, 1ПА периодической системы, в которых азот, фосфор, мышьяк, сурьма, углерод, кремний, бор являются относительно электроотри- [c.32]

    Помимо приведенных выше, укажем еще соединения щелочных металлов с азотом, фосфором, углеродом и кремнием нитрид лития Ь1дЫ, нитрид натрия N3314 с >осфиды типа МсдР, где Ме — щелочной металл карбиды типа наконец, силицид лития [c.249]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Соединения с другими элементами. Скандий и его аналоги образуют с бором, углеродом, кремнием, азотом, фосфором, серой тугоплавкие соединения, часто с металлическими свойствами, например S N, ЬаСг, S sSis, S 3SI5, S SI2. Многие из них не обладают стехиометрическим составом. [c.428]


Смотреть страницы где упоминается термин Соединения с фосфором, углеродом и кремнием: [c.477]    [c.351]    [c.477]    [c.200]    [c.537]    [c.543]    [c.42]    [c.8]    [c.251]    [c.116]    [c.511]    [c.508]    [c.291]   
Смотреть главы в:

Химия и технология редких и рассеянных элементов Том 1 -> Соединения с фосфором, углеродом и кремнием

Химия и технология редких и рассеянных элементов Том 1 -> Соединения с фосфором, углеродом и кремнием

Химия редких и рассеянных элементов Том 1 -> Соединения с фосфором, углеродом и кремнием

Химия редких и рассеянных элементов Том 1 -> Соединения с фосфором, углеродом и кремнием




ПОИСК





Смотрите так же термины и статьи:

Фосфорила соединения



© 2025 chem21.info Реклама на сайте