Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамические свойства металлических поверхностей

    III. ДИНАМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ [c.169]

Рис. 132. Схема установки для определения защитных свойств летучих ингибиторов динамическим методом при контакте носителя летучего ингибитора с металлической поверхностью 64] Рис. 132. <a href="/info/13990">Схема установки</a> для <a href="/info/1757008">определения защитных свойств</a> <a href="/info/391814">летучих ингибиторов</a> <a href="/info/12320">динамическим методом</a> при контакте носителя <a href="/info/391814">летучего ингибитора</a> с металлической поверхностью 64]

Рис. 134. Схема установки для динамических испытаний защитных свойств летучих ингибиторов при отсутствии контакта между носителем летучего ингибитора и металлической поверхностью 65] Рис. 134. <a href="/info/13990">Схема установки</a> для динамических <a href="/info/1745427">испытаний защитных свойств</a> <a href="/info/391814">летучих ингибиторов</a> при отсутствии <a href="/info/8799">контакта между</a> носителем <a href="/info/391814">летучего ингибитора</a> и металлической поверхностью 65]
    В последние годы большой интерес вызывают динамические электрохимические процессы, протекающие на поверхности раздела жидкость/жидкость, поскольку они открывают перед электро-аналитической химией новые возможности. В частности, использование явления переноса ионов через границу раздела двух несмешивающихся жидкостей, например вода/нитробензол, позволяет определять вещества, которые не могут обмениваться электронами с электродом. При этом поверхность раздела жидкость/жидкость по своим свойствам во многих отношениях подобна границе раздела металлический электрод/раствор электролита, хотя механизм отклика здесь иной. С помощью таких электродов можно определять ионы щелочных и щелочноземельных металлов, анионы минеральных кислот, антибиотики, лекарственные вещества, некоторые виды микроорганизмов. [c.408]

    Простейший тип коррозии — равномерное поверхностное растворение, уменьшающее толщину материала, но не влияющее на его физико-химические и механические свойства. Однако картина коррозионного разрушения далеко не всегда так проста. Как правило, коррозия на разных участках поверхности оказывается более или менее неравномерной. В случае так называемой точечной коррозии степень неравномерности огромна на фоне почти неповрежденной поверхности с большой скоростью развиваются глубокие точечные поражения, быстро приводящие к перфорации стенок и выходу аппаратов из строя. Иногда коррозия металлов носит ножевой характер вдоль сварных швов образуются узкие глубокие канавки. Весьма часто преимущественному разрушению подвергаются границы зерен металла связь между зернами ослабевает, что резко ухудшает механические свойства металла и может привести к растрескиванию аппарата. Опасность растрескивания особенно велика, если материал находится в напряженном состоянии. Коррозионному растрескиванию под напряжением подвержены многие металлические материалы в специфических средах. Оно может быть транс- и меж-кристаллитным и смешанным. Динамические нагрузки могут породить и другие виды разрушения коррозионно-усталостное или кавитационное. [c.5]


    Самоустанавливающиеся подшипники скольжения содержат конструктивные элементы, которые обеспечивают самоустановку вкладыша по валу. Целесообразность самоустановки обусловлена тем, что работоспособность подщипников должна сохраняться при неточностях монтажа, вибрациях, биении и перекосах вала. Этому способствует прилегаемость антифрикционных металлополимерных материалов [12]—свойство антифрикционного подшипникового материала компенсировать неудовлетворительное начальное прилегание к валу упругим и пластическим деформированием в слое. В большинстве конструкций самоустанавливающихся металлополимерных подшипников рационально используются упруго-пластические свойства и прилегаемость пластмасс в сочетании с прочностью и жесткостью металлических элементов. На рис. VII.2 изображены подшипники скольжения для узлов трения, в которых по условиям работы требуется уменьшить динамические нагрузки и колебания. В полимерном вкладыше радиального подшипника (рис. VП.2, а) расположены упругие зигзагообразные опоры, на которые устанавливается вал. Если монтаж выполняется с предварительным натягом, беззазорное положение вала в опоре сохраняется по мере износа рабочих поверхностей [19]. Тонкостенный вкладыш подшипника на рис. VII.2, б выполнен плавающим в виде гофрированного сильфона, покрытого слоем антифрикционной пластмассы. По мере изменения эксплуатационных параметров скольжение происходит по внутренней или наружной поверхности, вкладыша. Под действием динамических нагрузок вкладыш де- [c.195]

    Одним из важнейших свойств резины, оказывающим существенное влияние на соотношение отдельных видов износа и на интенсивность истирания, является ее жесткость (твердость, напряжение при заданном удлинении /30о, модуль упругости, динамический модуль и др.) [5, с. 213—237]. Особенно велика роль жесткости резины при износе посредством скатывания . При определенном значении твердости или /30 о интенсивность истирания на гладком рифленом металлическом диске понижается на порядок (см. рис. 2.2), исчезает характерный рисунок истирания, что указывает на переход от износа посредством скатывания к усталостному износу. Как показано в гл. 1 и 2, при усталостном износе повышение жесткости резин приводит к снижению износостойкости. При высокой жесткости резин в случае испытания на шероховатой поверхности с острыми выступами может наблюдаться переход от преобладающего усталостного к преобладающему абразивному износу. [c.69]

    Саыин [18] опубликовал содержательный обзор, посвященный противоизносным и противозадирным присадкам. Наряду с хорошо известными присадками, которые обсуждались выше, он олисал свойства фосфорорганических и хлорфосфороргани-ческих присадок. Предполагается, что такие присадки разлагаются на хлор, сероводород и фосфористый или хлористый водород. Эти соединения в горячих точках вступают в реакцию с металлом. Для изучения противозадирной смазочной пленки, образующейся на чугунных кулачках и толкателях, которые смазываются моторным маслом с присадкой дитиофос-фата цинка, в молекулы этой присадки вводили радиоактивный изотоп 5 [19]. В статических условиях содержание серы в смазочной пленке увеличивается пропорционально длительности и температуре выдержки, а также при фосфатировании металлических поверхностей. Содержание связанной серы в пленке, образующейся в процессе динамических испытаний, повышается с увеличепием продолжительности испытаний, нагрузки и при фосфатировании поверхностей. Условия испытаний влияют также на соотношение мелсду содержанием цинка, фосфора и серы в пленке, образующейся как в статических, так и в динамических опытах. При повышении давления и (или) температуры концентрация ци1 ка, и особенно фосфора, растет быстрее, чем концентрация серы. Пленка, образующаяся в динамических условиях, достаточно прочно удерживается на поверхности металла прн последующих испытаниях на маслах, не содержащих присадок. Полагают, что механизм действия дитиофосфа-та цинка определяется химическими реакциями продуктов [c.124]

    Твердые смазки разрушаются вследствие механического удаления микрослоев смазочного материала при трении. В результате такого износа нарушается динамическая стабильность подщипника в связи с нарушением зазоров в нем, а также из-за патира или задиров металлических поверхностей. Такой характер процесса износа ограничивает возможности применения твердых смазок. С целью увеличения срока службы смазочной пленки проводят многочисленные лабораторные исследования. В результате этих исследований область применения существующих и потенциальных твердых смазок должна расширяться. Исследования, проведенные в Инженерном центре морской авиации, показали, что противоизносные свойства поверхностей, смазываемых твердыми смазками, определяются в основном 1) конструкцией подшипника 2) взаимодействием смазочного материала с трущимися поверхностями 3) свойствами поверхностей трения. [c.294]


    Не менее важное влияние на защитные и противокоррозионные свойства оказывают объемные (моющие) свойства маслорастворимых ПАВ (см. табл. 17). Под моющими свойствами в настоящее время понимают совокупность физико-химических, коллоидных, электрических и электрохимических явлений, приводящих к предотвращению накопления, коагуляции и отложению продуктов окисления и уплотнения ефтепродуктов на металлических поверхностях двигателя, а также способность масла удалять (смывать) уже образовавшиеся отложения и нагар с металлических поверхностей и обеспечивать необходимую чистоту (дисперсность) масла. В основе моющего действия присадок лежит особенность их химического строения, полярность и поляризуемость ПАВ, зависящие от статических и динамических электронных эффектов их полярных групп [15, 108]. Механизм моющего действия слагается из следующих факторов нейтрализующих свойств присадок, связанных с наличием у них избыточной щелочности солюбилизирующих свойств (внутримицеллярной, межмолекулярно-мицеллярной, надмицел-лярной и структурной солюбилизации) детергентно-диспергирую-щих и стабилизирующих свойств, связанных с сорбцией ПАВ и их мицелл на углеродистых и сажистых частицах и с так называемым собственно моющим действием, т. е. способностью присадок не допускать сорбции сажистых частиц на металле и смывать их с него в результате образования у металлических поверхностей двойных электрических слоев (ДЭС) — электростатических барьеров из жестких диполей полярных ПАВ (см. табл. 17) [15, 55, 88, 106, 108]. Все эти факторы моющего действия взаимосвязаны между собой. [c.87]

    Из практики известно, что обкладочные резины (резины, предназначенные для крепления к текстильному или металлическому корду, ткани или проволоке) следует тщательно предохранять от попадания силоксановых каучуков и кремнийорганических жидкостей, поскольку они, как правило, несовместимы с углеводородными каучуками и, вследствие этого, стремятся выйти на поверхность раздела между армирующим материалом и полимером. От этих процессов в наибольшей степени страдают адгезионные свойства композиций. В то же время, известно, что в некоторых случаях малые добавки кремнийорганических соединений оказывают положительное влияние на свойства эластомерных композиций на основе обычных углеводородных каучуков, в частности, на их вязкость и уровень упруго-прочностных и динамических показателей их вулканизатов. Известно также, применение кремнийоранических добавок, содержащих функциональные группы, в качестве промоторов взаимодействия неполярных каучуков с гидрофильными наполнителями, особенно, кремнекислотного типа. [c.112]

    Исследование процесса возникновения зарядов проводили также при динамических режимах сжатия в процессе изменения температуры. Образцы в виде цилиндров помещали между двумя металлическими электродами и периодически сжимали с частотой 25 Гц, в режиме постоянной деформации или постоянной нагрузки [45, 46, 53]. Для изучения влияния химического строения полимеров, в частности, полярности полимеров, измерения проводили на образцах вулканизатов с одинаковой степенью поперечного сшивания на основе каучуков СКН-18, СКН-26 и СКН-40 — сополимеров бутадиена и акрилонитрила с содержанием последнего соответственно 18, 26 и 40% (масс.). В этом ряду увеличивалась степень межмолекулярного взаимодействия и температура стеклования. Из температурных зависимостей (рйс. 10) видно, что величины зарядов, индуцируемых на электродах, связаны с релаксационными переходами в полимерах. Вблизи температуры стеклования, в области максимальных механических потерь величина зарядов проходит через максимум, который сдвигается по температурной шкале вправо вслед за увеличением межмолекулярного взаимодействия в полимерах. Меры, принимаемые для исключения трибоэффекта — изменение материала электродов, смазка поверхности глицерином, не приводили к изменению результатов. По-видимому, в процессе деформации происходит накопление зарядов, что и приводит к индуцированию электрических потенциалов на электродах. Величина индуцируемых потенциалов зависит от деформационных свойств полимеров. Следует отметить, что в режиме динамического сжатия при постоянной деформации с ростом полярности вулка-низата растет модуль сжатия, одновременно растет и максимум заряда. В режиме постоянной нагрузки с ростом модуля сжатия величина максимума заряда уменьшается, так как изменение величины заряда следует за изменением работы, затрачиваемой на деформацию. [c.25]


Смотреть страницы где упоминается термин Динамические свойства металлических поверхностей: [c.62]    [c.83]   
Смотреть главы в:

Современные проблемы электрохимии  -> Динамические свойства металлических поверхностей




ПОИСК







© 2025 chem21.info Реклама на сайте