Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление кетонов Продукты окисления кетонов

    У животных этот цикл повторяется до достижения нужной длины углеродной цепи кислот. Подобный механизм объясняет, почему все жирные кислоты содержат нормальную цепь и четное число углеродных атомов. В некоторых бактериях этот цикл обрывается на стадии образования масляной кислоты- В нормальных организмах промежуточные продукты цикла связаны через кофермент с белком и не могут быть выделены из липидной фракции. При диабете метаболизм нарущается, и продукты неполного окисления (известные под названием кетоновых тел) накапливаются в крови и моче (кетонурия). Кетоновые тела включают промежуточные продукты цикла ацетоуксусную кислоту (и ацетон как продукт расщепления последней) и а-оксимасляную кислоту. [c.716]


    При пониженном поступлении углеводов с пищей в организме ускоряется использование жиров и белков в качестве источников энергии. Усиленный распад внутриклеточных белков может привести к снижению их содержания в клетках и появлению симптомов белкового голодания (см. выше). Кроме того, окисление белков сопровождается повышенным выделением аммиака. При окислении жиров в качестве промежуточных продуктов образуются кетоновые тела, накопление которых вызывает ацидоз - смещение кислотно-щелочного равновесия в кислую сторону. [c.230]

    Усвояемые углеводы являются основным поставщиком энергии. И хотя их энергетический коэффициент меньше, чем у жиров, человек потребляет большое количество углеводов и получает с ними 50-60% требуемых калорий. Хотя усвояемые углеводы как поставщики энергии могут в значительной мере заменяться жирами и белками, полностью исключить их из питания нельзя. В противном случае в крови появятся продукты неполного окисления жиров, так называемые кетоновые тела , произойдет нарушение функции центральной нервной системы и мышц, ослабление умственной и физической деятельности, сократится продолжительность жизни. [c.17]

    Кетоновые тела образуются в печени. Прежние представления о том, что кетоновые тела являются промежуточными продуктами Р-окисления жирных кислот, оказались ошибочными. [c.379]

    Таким образом, на втором этапе образуется практически единственный общий метаболит катаболизма биомолекул различных классов в клетках — активированная форма уксусной кислоты. Как отмечалось ранее (гл. 1), по критерию химических свойств уксусная кислота из всех образующихся в обмене структурных молекул (двух-трех углеродных фрагментов) наиболее предпочтительна для использования в биологических системах как для реакций биосинтеза, так и последующего катаболизма до образования конечных продуктов. Следовательно, выбор ацетил-КоА в качестве основного центрального метаболита однозначно целесообразен, и в этом проявляется одно из свойств живой материи — принцип молекулярной целесообразности. Катаболизм аце-тил-КоА — это его полное окисление до СО2 в цикле ТКК, реакции же анаболического характера — синтез холестерола, кетоновых тел и жирных кислот. [c.445]

    Превращение углеводов в жиры можно рассматривать как запасание энергии, которая будет освобождаться при окислении жиров. Известно, что в состоянии относительного покоя, при длительной физической работе, голодании в печени, скелетных мышцах и сердце важными энергетическими субстратами являются свободные жирные кислоты и кетоновые тела. При этом используются продукты распада жирных кислот — кетоно- [c.266]


    Кетоновые тела (ацетоновые тела) — продукты интенсивного распада и окисления липидов и жирных кислот гидрокси-масляная кислота, ацетоуксусная кислота, ацетон. Образуются в печени из ацетил-КоА, поступают в кровь, частично извлекаются тканями, где окисляются и дают энергию. Часть выводится с мочой (особенно много при больших физических нагрузках и заболевании сахарным диабетом). Кетонурия — выделение кетоновых тел с мочой, [c.490]

    У всех буферных систем крови преобладает основный (щелочной) компонент, вследствие чего они нейтрализуют значительно лучше поступающие в кровь кислоты, чем щелочи. Эта особенность буферов крови имеет большое биологическое значение, поскольку в ходе метаболизма в качестве промежуточных и конечных продуктов часто образуются различные кислоты (пировиноградная и молочная - при распаде углеводов метаболиты цикла Кребса и Р-окисления жирных кислот кетоновые тела, угольная кислота и др.). Все возникающие в клетках кислоты могут попасть в кровяное русло и вызвать сдвиг pH в кислую сторону. Наличие большой буферной емкости по отношению к кислотам у буферов крови позволяет им нейтрализовать значительные количества кислых продуктов, поступающих в кровь, и тем самым способствовать сохранению постоянного уровня кислотности. [c.113]

    По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов - СОг и Н2О и поэтому выделяется большое количество энергии. Так, например, при аэробном окислении мышечного гликогена образуется 39 молекул АТФ в расчете на каждую отщепляемую от гликогена молекулу глюкозы, в то время как при анаэробном распаде этого углевода (гликолиз) синтезируется только 3 молекулы АТФ в расчете на одну молекулу глюкозы. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма аминокислоты (белки), углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы практически он функционирует постоянно в течение всей жизни. В покое скорость аэробного ресинтеза АТФ низкая, при физических нагрузках его мощность может стать максимальной. [c.138]

    Ацетоуксусная кислота образуется in vivo в процессе метаболизма высщих жирных кислот и как продукт окисления Р-гидро-ксимасляной кислоты наряду с продуктами ее превращений накапливается в организме у больных сахарным диабетом (так называемые ацетоновые или кетоновые тела). [c.266]

    На основании исследований Сивонена для объяснения механизма действия водяного пара на углерод была выдвинута следующая гипотеза. Кислород, образующийся при разложении водяного пара, вначале связывается с атомами углерода, находящимися в углах гексагональных кристаллов углерода, гра-фитизированного в процессе коксования. Эти связи, имеющие кетеновый > С = С = 0 или кетоновый > С = 0 характер, размыкаются с образованием СО. При большом избытке водяного пара, вводимом при газификации топлива в генераторах, первичные продукты окисления могут легко реагировать с водяным паром, так как реакция (7) образования водяного газа протекает очень быстро, особенно при высоких те.мпературах. [c.24]

    Брегер (Breger, 1960) считает, что жирные кислоты могут превращаться в организмах в бета-кетокислоты. Эти промежуточные продукты окисления могут терять углекислый газ при реакции кетонового расщепления. Образующаяся карбонильная группа восстанавливается до спиртового гидроксила, который дегидратируется с образованием ненасыщенного алифатического углеводорода. Двойная связь насыщается биогенным водородом. Путем такого или аналогичного ряда реакций четные (Ч) жирные кислоты превращаются в нечетные (НЧ) к-алканы. [c.237]

    Роль сердечной мышцы. Сердечная мышца работает преимущественно в аэробном режиме. Она содержит большое количество митохондрий, которые занимают около 40 % объема цитоплазмы. В качестве субстратов окисления используются жирные кислоты, кетоновые тела, пировиноградная и молочная кислоты, глюкоза. Гликоген сердечная мышца почти не депонирует. В связи с аэробным энергетическим обменом для сердечной мышцы обязательным является достаточное поступление кислорода. При гипоксических состояниях накапливаются недоокисленные продукты обмена, что может вызвать состояние ацидоза и нарушение сократительной функции миокарда. [c.283]

    Процесс Французского института нефти обеспечивает получение циклогок санона чистотой 99,7% (масс.) благодаря тому, что спи рто кетоновая смесь, образующаяся при окислении, имеет также высокую чистоту — 99,5% (масс.). Технологическая схема стадии дегидрирования приведена на рис. 2.11. Смесь спи )га и кетона, поступающая со стадии окисления, смешивается с возвратным спиртом, нагревается и испаряется в аппарате 1, а затем пары смеси поступают в реактор 2 — многотрубчатый аппарат, содержащий катализатор. Продукты реакцил [c.66]


    СоА—эпимераза, превращающая D-сте-реоизомеры соответствующих 3-гидрок-сиацил-СоА в L-стереоизомеры. Жирные кислоты с нечетнь(м числом атомов углерода окисляются по тому же основному пути, но при их окислении получается одна молекула пропионил-СоА, которая затем карбоксилируется с образованием метилмалонил-СоА. Последний превращается в сукцинил-СоА в результате очень сложной реакции изомеризации, катализируемой метилмалонил-СоА— мутазой, для действия которой необходим кофермент Bj2. Образующиеся в печени кетоновые тела-ацетоацетат, D-P-гидроксибутират и ацетон-доставляются к другим тканям, превращаются здесь в ацетил-СоА и окисляются через цикл лимонной кислоты. Окисление жирных кислот в печени регулируется скоростью поступления ацильных групп в митохондрии. Специфическая регуляция достигается при помощи малонил-СоА, вызывающего аллостерическое ингибирование карнитин-ацилтрансферазы I. Малонил-СоА-первый промежуточный продукт биосинтеза жирных кислот, протекающего в цитозоле. Когда животное получает пищу, богатую углеводами, окисление жирных кислот подавляется, а их синтез усиливается. [c.568]

    Кетоновые тела. Продукты неполного окисления жирных кислот-ацетоацетат, В-Р-ги-дроксибутират и ацетон. [c.1012]

    Всякий раз, когда окисление глюкозы почему-либо ограничено, может возникнуть кетоз. Таким образом, к кетозу, а следовательно, и к ацидозу приводит нарушение не липидного обмена, а углеводного. Чаще всего причиной такого нарушения углеводного обмена бывают голод и диабет. При голодании прекращается поступление углеводов с пищей. При диабете глюкоза не может быть окислена, так как она неспособна пройти через клеточную стенку. Когда потребность в энергии (т. е. в АТФ) не может быть удовлетворена за счет окисления глюкозы, организм переключается на окисление жирных кислот, которые мобилизуются из жировых депо и доставляются кровью в печень. От большого количества поступающих липидных продуктов кровь мутнеет такое состояние известно под названием липемии. При этом наблюдается накопление жира в печени. Так как окисление жирных кислот усиливается, то образование кетоновых тел превышает их использование, а это приводит к развитию кетоза. До тех пор пока способность тела окислять глюкозу не будет восстановлена (например, введением инсулина), ацидоз, со всеми сопутствующими ему явлениями, будет развиваться. [c.398]

    Определение продуктов неполного окисления может быть ис-рользовано, как для общей характеристики протекания окислительных процессов в opraHH3ifffe, так и для выяснения степени нарушения обмена углеводов и лйпидов. Продукты неполного окисления можно определить раздельно (например, молочная кислота, кетоновые тела) или суммарно (определение вакат-кислорода). [c.237]

    Кетоновыми веществами называют продукты неполного окисления масляной кислоты, которые скапливаются в организме в результате нарушения жирового обмена. К ним относятся ацетоуксусная, бета-оксимасляпая кислоты и ацетон  [c.112]

    Окисление жирных кислот в нормальном режиме протекает без существенного накопления промежуточных продуктов, в частности ацетил-КоА. Однако при некоторых патологических состояниях организма (сахарный диабет) и при резких отклонениях в режиме нормального питания (голодание, диеты) происходит накопление в крови так называемых кетоновых или ацетоновых тел. К ним относятся три вещества ацетоук-сусная кислота ацетоацетат), -гидроксимасляная кислота -гидрокси-бутират) и ацетон. Они являются недоокисленными промежуточными продуктами распада жирных кислот и в основном образуются в печени из ацетил-КоА. В нормальном режиме работы метаболических путей кетоновые тела с кровью доставляются к периферическим органам, где окисляются в цикле Кребса. Но потеря организмом способности к утилизации этих веществ кетоз) приводит к их значительному накоплению в крови кетонемия) и в моче кетонурия), что является диагностическим признаком ряда заболеваний. [c.434]

    Недостаток карнитина встречается у новорожденных, чаще всего недоношенных детей он обусловлен либо нарушением биосинтеза карнитина либо его утечкой в почках. Потери карнитина могут происходить при гемодиализе больные, страдающие органической ацидурией, теряют большое количество карнитина, который экскретируется из организма в форме конъюгатов с органическими кислотами. Для восполнения потерь этого соединения некоторые пациенты нуждаются в особой диете, включающей продукты, содержащие карнитин. Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса-окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания СЖК в плазме крови, мышечная слабость (миастения), а также накопление липидов. При лечении внутрь принимают препарат карнитина. Симптомы недостатка карнитина очень сходны с симптомами синдрома Рейе (Кеуе), при котором, однако, содержание карнитина является нормальным. Причина синдрома Рейе пока неизвестна. [c.229]

    При повышении уровня свободных жирных кислот в сыворотке крови пропорционально больше свободных жирных кислот превращается в кетоновые тела и соответственно меньше окисляется в цикле лимонной кислоты до СО2. При этом в результате регулирования достигается такое распределение ацетил-СоА между путем кетогенеза и путем окисления до СО2, что свободная энергия, запасаемая в форме АТР в процессе окисления свободных жирных кислот, остается постоянной. При полном окислении 1 моля пальмитата путем Р-окисления и последующего образования СО2 в цикле лимонной кислоты генерируется 129 молей АТР (см. гл. 23) если же конечным продуктом является ацетоацетат, образуется всего 33 моля АТР, а если З-гидроксибути-рат—то только 21 моль. Следовательно, кетогенез можно рассматривать как механизм, позволяющий печени окислять большие количества жирных кислот, используя реакции, входящие в сисгему окислительного фосфорилирования (при этом генерация макроэргов невелика). [c.293]


Смотреть страницы где упоминается термин Окисление кетонов Продукты окисления кетонов: [c.29]    [c.318]    [c.481]    [c.318]    [c.481]    [c.157]    [c.286]    [c.291]   
Смотреть главы в:

Механизм жидкофазного окисления кислородосодержащих соединений -> Окисление кетонов Продукты окисления кетонов




ПОИСК





Смотрите так же термины и статьи:

Продукты окисления



© 2025 chem21.info Реклама на сайте